## J.D WOMEN'S COLLEGE PATNA BOTANY DEPARTMENT

#### Course Outcomes - Program Outcomes (CO & PO) Mapping

#### Program Outcomes (PO): M.Sc. Botany

M.Sc. Botany is a two-year postgraduate programme to impart advanced knowledge on modern biology. Other than providing students with indispensable knowledge, the programme curriculum fosters problem-solving and critical thinking skills that prepare students to take on any challenges.

Under this programme the students gain insights into the key research areas of Botany. The programme encompasses a balance of both theoretical and practical sessions which enables the students to apply their learning and develop end results.

The programme focuses on career-oriented subjects like Microbial Biotechnology, Plant tissue culture, Enzyme Technology and Genetics, Plant breeding and Crop improvement etc.

#### **Programme Specific Outcome**

- **PSO1.** Students completing the course will be able to understand different aspects of botany such as Phycology, Mycology, Microbiology, Bryophytes and pteridophytes.
- PSO2 The student completing the course will understand the diversity and phylogeny
  of the gymnosperm, taxonomy of angiosperms and concepts and processes in plant
  anatomy, developmental biology.
- **PSO3**. After successful completion of the course, a student is able to understand different fields of Botany like systematics, evolution, ecology, physiology, biochemistry, plant interactions with microbes and insects, anatomy, morphology, reproduction, genetics and molecular biology of various life-forms. They have an edge over other students as they will be trained in skill enhancement courses like Biofertilizer technology.
- PSO4. The student completing the course is able to classify various life forms of plants, design and execute experiments related to basic studies on environment ecology, physiology, biochemistry, plant interactions with microbes and insects, morphology, anatomy, reproduction, genetics, microbiology, molecular biology, recombinant DNA technology etc.
- **PSO5** The student completing the course is capable of executing short-term research projects/dissertations using tools and techniques in any of the basic specializations of Botany under supervision.

## **Course Outcome**

## Semester: I

|     | _            |                                  | Schiester, 1                                                                                                                                                                                        |  |  |  |
|-----|--------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| SI. | <u>Paper</u> | <u>Title</u>                     | Course outcome                                                                                                                                                                                      |  |  |  |
| No. | /Course      |                                  |                                                                                                                                                                                                     |  |  |  |
| 1.  | MBOTCC-I     | Mycology and                     | On successful completion of this course, students will be able to know about the-                                                                                                                   |  |  |  |
|     |              | Bryology                         | CO1: Thallus organisation of algae, fungi and bryophytes, and their salient features.                                                                                                               |  |  |  |
|     |              |                                  | CO2: Different kinds of algal, fungal, lichen and bryophyte diversity and their economic implication. The course has importance in the areas of academics and research.                             |  |  |  |
| 2.  | MBOTCC-      | Microbiology and Plant Pathology | Students will learn- CO1: Methods in microbiology, develop theoretical                                                                                                                              |  |  |  |
|     |              | Trant Tathology                  | and technical skills of basic microbiology (sterilize, isolate, culture, preserve microbes), the structure of bacteria and viruses.                                                                 |  |  |  |
|     |              |                                  |                                                                                                                                                                                                     |  |  |  |
|     |              |                                  | fields e.g.: pharmaceuticals, agriculture etc. CO4: Ways and means of combating plant diseases so                                                                                                   |  |  |  |
|     |              |                                  | as to minimize economic loss.                                                                                                                                                                       |  |  |  |
|     |              |                                  | The course has importance in the areas of academics, research, and employability.                                                                                                                   |  |  |  |
| 3.  | MBOTCC-      | Pteridophyte,                    | Students will get in-depth knowledge of-                                                                                                                                                            |  |  |  |
|     | 3            | Gymnosperms and<br>Palaeobotany  | CO1: The plant diversity (esp. In pteridophytes, and gymnosperms) and understanding the evolutionary trends through the study of palaeobotany.  CO2: The evolutionary diversification of early land |  |  |  |
|     |              |                                  | plants and morphological and reproductive innovations in pteridophytes and gymnosperms.  The course has importance in the areas of academics                                                        |  |  |  |
|     | ) (DOTGG     | D .: 1                           | and research.                                                                                                                                                                                       |  |  |  |
| 4.  | MBOTCC-      | Practical                        | Students will learn and perform practical on-<br>CO1: Use of sterilization instruments, media                                                                                                       |  |  |  |
|     |              |                                  | preparation.                                                                                                                                                                                        |  |  |  |
|     |              |                                  | CO2: Isolation and study of microorganisms. CO3: Study of common fungal diseases, vegetative                                                                                                        |  |  |  |
|     |              |                                  | habits, anatomy and reproductive morphology of                                                                                                                                                      |  |  |  |
|     |              |                                  | common pteridophytes and gymnosperms.  The course has importance in the areas of academics,                                                                                                         |  |  |  |
|     |              |                                  | research, and employability.                                                                                                                                                                        |  |  |  |

## **Semester: II**

| SI. | Paper    | <u>Title</u>                                                          | Course outcome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----|----------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No. | /Course  |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5.  | MBOTCC-5 | Biofertilizer<br>Technology                                           | On successful completion of this course, students will be able to know about the- CO1: Biofertilizers and their use.  CO2: Isolation, identification, purification, mass production of microorganisms used in biofertilizers, and also on quality control of commercial biofertilizers.  CO3: Biofertilizers' applied aspects for the enhancement of soil fertility and crop productivity and ideal way for sustainable development.  The course has importance in the areas of academics, research, and employability. |
| 6.  | MBOTCC-6 | Taxonomy,<br>Anatomy &<br>Embryology                                  | Students will get in-depth knowledge of-CO1: Classifications and interaction between taxonomy, anatomy & embryology. CO2: Different methods of naming plants, different principles of nomenclature etc. CO3: Phylogeny and phylogenetic systematic, methods used in molecular systematic studies. CO4: Embryology, and its role in taxonomy.                                                                                                                                                                            |
| 7.  | MBOTCC-7 | Physiology & Biochemistry                                             | Students will learn-CO1: The mechanism of osmotic relations, metabolism, growth and morphogenesis. CO2: Energy transduction mechanism and biochemical energetics in plants. CO3: Enzymes, their structure, role and properties. The course has importance in the areas of academics and research.                                                                                                                                                                                                                       |
| 8.  | MBOTCC-8 | Plant tissue culture,<br>Ethnobotany,<br>Biodiversity and<br>Biometry | After completing the course, students will get to know about- CO1: Ways of conservation and propagation of economically important and endangered plants. CO2: Biodiversity, their types, patterns, loss, conservation and its importance. CO3: Biometric tools like measurement of variability and test of significance of data etc. CO4: Cell and tissue culture, ethnopharmacology, and ethnoecology. The course has importance in the areas of academics, employability and research.                                |

| 9. | MBOTCC- | Practical | Students will get practical knowledge on-                |
|----|---------|-----------|----------------------------------------------------------|
|    | 9       |           | CO1. Preparation of culture media, explant culture and   |
|    |         |           | callus initiation.                                       |
|    |         |           | CO2: Family description of some locally available plants |
|    |         |           | and their taxonomic classification.                      |
|    |         |           | CO3: Physiological studies like determination of water   |
|    |         |           | potential, estimation of protein, paper chromatography   |
|    |         |           | etc.                                                     |
|    |         |           | CO4: Staining and study of xylem, phloem and pollen      |
|    |         |           | etc.                                                     |
|    |         |           | The course has importance in the areas of academics,     |
|    |         |           | research, and employability.                             |

Semester III

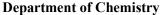
| SI. | Paper   | <u>Title</u>      | Course outcome                                                                                     |
|-----|---------|-------------------|----------------------------------------------------------------------------------------------------|
| No. | /Course |                   |                                                                                                    |
| 10. | MBOTCC- | Cell biology &    | Students will learn-                                                                               |
|     | 10      | Cytogenetics      | CO1: Cell theory, ultrastructure and chemical                                                      |
|     |         |                   | composition of the cell.                                                                           |
|     |         |                   | CO2: Cell cycle, apoptosis, and its control                                                        |
|     |         |                   | mechanism.                                                                                         |
|     |         |                   | CO3: Concepts of Mendelian genetics, sex                                                           |
|     |         |                   | determination and extranuclear inheritance.                                                        |
|     |         |                   | CO4: Basics of microscopy and micro-densitometry.                                                  |
|     |         |                   | The course has importance in the areas of                                                          |
|     |         |                   | academics, research, and employability.                                                            |
| 11. | MBOTCC- | Molecular Biology | On successful completion of the course, students will                                              |
|     | 11      |                   | learn-                                                                                             |
|     |         |                   | CO1: The structure and function of the protein and                                                 |
|     |         |                   | nucleic acid, DNA organization and its packaging.                                                  |
|     |         |                   | CO2: Principle mechanisms of genome replication,                                                   |
|     |         |                   | maintenance, function and regulation of expression.                                                |
|     |         |                   | The course has importance in the areas of                                                          |
|     |         |                   | academics, research, and employability.                                                            |
| 12. | MBOTCC- | Recombinant DNA   | Students will learn-                                                                               |
|     | 12      | technology        | CO1: Manipulating DNA molecules to produce                                                         |
|     |         |                   | genetic combinations which are of value to science,                                                |
|     |         |                   | medicine & various industries.                                                                     |
|     |         |                   | CO2: rDNA technology, cloning vectors, passenger DNA, methods of DNA transfer, DNA fingerprinting, |
|     |         |                   | IPR etc.                                                                                           |
|     |         |                   | The course has importance in the areas of                                                          |
|     |         |                   | academics, research, and employability.                                                            |
| 13. | MBOTCC- | Plant ecology and | Students will have knowledge about-                                                                |
|     | 13      | environmental     | CO1: Organism and population concept,                                                              |
|     |         | biology           | interactions among populations.                                                                    |
|     |         |                   | CO2: Community structure and                                                                       |
|     |         |                   | community dynamics.                                                                                |
|     |         |                   | CO3: Concept of ecosystem, ecosystem energetic,                                                    |
|     |         |                   | environmental pollution.                                                                           |
|     |         |                   | CO4: Importance of environmental awareness.                                                        |

|     |               |           | The course has importance in the areas of academics, research, and employability                                                                                                                                                                                                                                                                                                                 |
|-----|---------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14. | MBOTCC-<br>14 | Practical | Students will gain practical knowledge on-CO1: Modern instruments used in botany, cytological techniques. CO2: Karyotype analysis. CO3: Basic recombinant DNA technology, DNA amplification. CO4: Electrophoresis, spectroscopy, centrifugation, isolation of microorganisms etc. CO5: Ecological adaptations. The course has importance in the areas of academics, research, and employability. |

## **Semester: IV**

| SI. | <b>Paper</b> | <u>Title</u>                             | Course outcome                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----|--------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No. | /Course      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 15  | MBOTEC-1     | Cytogenetics<br>and Crop<br>improvement  | Students will gain advanced knowledge on-CO1: Haploidy, aneuploidy, polyploidy, chromosome banding pattern. CO2: Mutations, transposons, epigenetics, epigenomics, human genetic diseases. CO3: Traditional and modern methods of crop improvement and plant breeding. The course has importance in the areas of academics, research, and employability.                                                                 |
| 16  | MBOTEC-1     | Applied Microbiology and Plant Pathology | Students will have in depth knowledge of-CO1: Industrial application of microbial diversity, study of causal organism of plant pathogens and their control. CO2: Fermentation technology, plant pathology etc. CO3: Solid waste treatment, composting and land filling. CO4: Wastewater treatment, bioremediation, biogas production.  The course has importance in the areas of academics, research, and employability. |
| 17  | MBOTEC-2     | Project<br>Dissertation                  | Students should be able to learn how to select and defend a topic of their research, how to effectively plan, execute, evaluate and discuss their experiments. The students are exposed to cutting-edge technologies to achieve a solution and learn to process scientific data using biostatistics.  Students should be able to demonstrate considerable improvement in the following areas –                           |

| - In-depth knowledge of the chosen area of research.           |
|----------------------------------------------------------------|
| - Capability to critically and systematically integrate        |
| knowledge to identify the issues that must be addressed within |
| the framework of the specific thesis.                          |
| •                                                              |
| - Competence in research design and planning.                  |
| - Capability to create, analyse and critically evaluate        |
| different technical solutions.                                 |
| - Ability to conduct research independently.                   |
| - Ability to perform analytical techniques/experimental        |
| methods.                                                       |
| - Project management skills.                                   |
| - Report writing skills.                                       |
| - Problem-solving skills.                                      |
| - Communication and interpersonal skills.                      |
| The course has importance in the areas of academic,            |
| research and employability.                                    |


|    |                           | <b>PO</b> | PO1 | PO2 | PO3 | PO4 | PO5 |
|----|---------------------------|-----------|-----|-----|-----|-----|-----|
| Se | Subject                   |           |     |     |     |     |     |
| m  |                           | co        |     |     |     |     |     |
| I  | Phycology, Mycology&      | CO1       | X   |     |     |     |     |
|    | Bryology                  | CO2       | X   |     |     |     |     |
|    | Microbiology& Plant       | CO1       | X   |     |     |     |     |
|    | Pathology                 | CO2       |     |     |     |     | X   |
|    |                           | CO3       |     |     |     | X   |     |
|    |                           | CO4       |     |     |     |     | X   |
|    | Pteridophyta, Gymnosperm& | CO1       | X   | X   |     |     |     |
|    | Paleobotany  Practical 1  | CO2       |     |     |     |     | X   |
|    | Practical 1               | CO1       |     |     |     | X   |     |
|    |                           | CO2       | X   |     |     |     |     |
|    |                           | CO3       |     |     |     | X   |     |
|    |                           | CO4       |     |     |     |     | X   |
| II | Biofertilizer Technology  | CO1       |     |     | X   |     |     |
|    |                           | CO2       |     |     |     | X   |     |
|    |                           | CO3       |     |     |     |     | X   |
|    | Taxonomy, Anatomy &       | CO1       |     | X   |     |     |     |
|    | Embryology                | CO2       |     | X   |     |     |     |
|    |                           | CO3       |     |     |     | X   |     |
|    |                           | CO4       |     |     |     |     | X   |
|    | Physiology & Biochemistry | CO1       |     |     | X   |     |     |
|    |                           | CO2       |     |     | X   |     |     |

|     |                              | CO3 |   |   |   | X |   |
|-----|------------------------------|-----|---|---|---|---|---|
|     |                              | CO4 |   |   |   |   | X |
|     | Plant Tissue Culture,        | CO1 |   |   |   | X |   |
|     | Ethnobotany, Biodiversity&   | CO2 |   |   |   | X |   |
|     | Biometry                     | CO3 |   |   |   |   | X |
|     |                              | CO4 |   |   |   |   | X |
|     | Practical 2                  | CO1 |   |   |   |   | X |
|     |                              | CO2 |   | X |   |   |   |
|     |                              | CO3 |   |   |   | X |   |
|     |                              | CO4 |   |   |   |   | X |
|     |                              |     |   |   |   |   |   |
| III | Cell Biology& Cytogenetics   | CO1 |   |   |   | X |   |
|     |                              | CO2 |   |   |   | X |   |
|     |                              | CO3 |   |   |   | X |   |
|     |                              | CO4 |   |   |   |   | X |
|     | Molecular Biology            | CO1 |   |   | X |   |   |
|     |                              | CO2 |   |   |   | X |   |
|     | Recombinant DNA              | CO1 |   |   | X |   |   |
|     | Technology                   | CO2 |   |   |   | X |   |
|     | Plant Ecology                | CO1 |   |   | X |   |   |
|     | &Environmental Science       | CO2 |   |   |   | X |   |
|     |                              | CO3 |   |   | X |   |   |
|     |                              | CO4 |   |   |   | X |   |
|     | Practical 3                  | CO1 |   |   |   | X |   |
|     |                              | CO2 |   |   | X |   |   |
|     |                              | CO3 |   |   |   | X |   |
|     |                              | CO4 |   |   |   | X |   |
|     |                              | CO5 |   |   |   | X |   |
| IV  | Cytogenetics &Crop           | CO1 |   |   | X |   |   |
|     | Improvement                  | CO2 |   |   |   | X |   |
|     |                              | CO3 |   |   |   |   | X |
|     | Applied Microbiology & Plant | CO1 | X |   |   |   |   |
|     | Pathology                    | CO2 |   |   | X |   |   |
|     |                              | CO3 |   |   |   |   | X |
|     |                              | CO4 |   |   |   | X | X |
|     | <b>Project Dissertation</b>  | CO1 |   |   |   | X | X |
| ·   | ·                            |     | · |   |   |   |   |



#### PATLIPUTRA UNIVERSITY, PATNA

J. D. Women's College, Patna (NAAC Accredited "B" Grade (CGPA 2.46)





#### CBCS-based syllabus for M.Sc. Chemistry (2 Years) Programme

It is two years Master's Degree Programme. There shall be four semesters to complete programme, i.e. 1<sup>st</sup>, 2<sup>nd</sup>, 3<sup>rd</sup> and 4<sup>th</sup> semester. Each semester shall consist of 15 weeks of academic work equivalent to 90 actual teaching days.

This programme will have three types of courses, i.e. core course and Elective course.

Core course (CC)- The core courses are those courses whose knowledge is deemed essential for the students registered for a particular Master's degree programme.

Elective course (EC)- The elective course can be chosen from a pool of papers in  $2^{nd}$  and  $4^{th}$  semester.

Each course will have 100 marks in full and divided into 70 marks for end-semester exam and 30 marks for internal assessment work. Internal assessment will be in two internal exams of 10 marks each 5 marks for seminar/internal project and 5 marks for attendance/discipline.

#### M.Sc. Chemistry (Two years Course)

#### **Course Structure**

#### M.Sc. Ist Semester

| Serial<br>No. | Courses            | Code        | Description                                                            | Credits | Max.<br>Marks |
|---------------|--------------------|-------------|------------------------------------------------------------------------|---------|---------------|
| 1             | Core Course<br>I   | MSCCHE CC-1 | Inorganic Chemistry-1                                                  | 5       | 100           |
| 2             | Core Course<br>II  | MSCCHE CC-2 | Physical Chemistry-1                                                   | 5       | 100           |
| 3             | Core Course<br>III | MSCCHE CC-3 | Organic Chemistry-1                                                    | 5       | 100           |
| 4             | Core Course<br>IV  | MSCCHE CC-4 | Practical (Physical)                                                   | 5       | 50+50         |
| 5             | AECC-1             |             | Environmental Sustainability and Swachchchha Bharat Abhiyan Activities | 3+2     | 50+50         |

# M.Sc. II<sup>nd</sup> Semester

| Serial<br>No.                        | Courses Code      |             | Description            | Credits | Max.<br>Marks<br>(100) |  |
|--------------------------------------|-------------------|-------------|------------------------|---------|------------------------|--|
| 6 Core Course<br>V                   |                   | MSCCHE CC-5 | Advances in Chemistry  | 5       | 100                    |  |
| 7                                    | Core Course<br>VI | MSCCHE CC-6 | Inorganic Chemistry-II | 5       | 100                    |  |
| 8 Core Course VII 9 Core Course VIII |                   | MSCCHE CC-7 | Physical Chemistry-II  | 5       | 100                    |  |
|                                      |                   | MSCCHE CC-8 | Organic Chemistry-II   | 5       | 100                    |  |
| 10                                   | Core Course<br>IX | MSCCHE CC-9 | Practical (Organic)    | 5       | 50+50                  |  |
| 11                                   | AEC-1             |             |                        | 5       | 50+50                  |  |

# M.Sc. III<sup>rd</sup> Semester

| Serial<br>No.                  | Courses           | Code                                        | Description                                                 | Credits | Max.<br>Marks<br>(100) |  |
|--------------------------------|-------------------|---------------------------------------------|-------------------------------------------------------------|---------|------------------------|--|
| 12 Core Course X               |                   | MSCCHE CC-10                                | Application of Spectroscopy                                 | 5       | 100                    |  |
| 13                             | Core Course<br>XI | MSCCHE CC-11                                | Bio-inorganic Chemistry                                     | 5       | 100                    |  |
| 14 Core Course MSCCHE CC-12 Er |                   | Environmental Chemistry and Green Chemistry | 5                                                           | 100     |                        |  |
| 15                             | 1. 0 0 110000     |                                             | Bio-organic Chemistry                                       | 5       | 100                    |  |
| 16 Core Course XIV             |                   |                                             | Practical (Inorganic<br>Chemistry)                          | 5       | 50+50                  |  |
| 17                             | AECC-2            |                                             | Human values and professional ethics & Gender sensitization | 3+2     | 50+50                  |  |

## M.Sc. IVth Semester

| Serial<br>No. | Courses              | Code         | Description                              | Credits | Max.<br>Marks<br>(100) |
|---------------|----------------------|--------------|------------------------------------------|---------|------------------------|
| 18            | Elective<br>Course-1 | MSCCHE EC-1a | Inorganic Chemistry Special              | 5       | 100                    |
| 19            | Elective<br>Course-1 | MSCCHE EC-1b | Physical Chemistry Special               | 5       | 100                    |
| 20            | Elective<br>Course-1 | MSCCHE EC-1c | Organic Chemistry Special                | 5       | 100                    |
| 21            | Elective<br>Course-2 | MSCCHE EC-2a | Inorganic Chemistry Special<br>Practical | 5       | 50+50                  |
| 22            | Elective<br>Course-2 | MSCCHE EC-2b | Physical Chemistry Special<br>Practical  | 5       | 50+50                  |
| 23            | Elective<br>Course-2 | MSCCHE EC-2c | Organic Chemistry Special<br>Practical   | 5       | 50+50                  |
| 24            | DSE-1 or<br>GE-1     |              |                                          | 5       | 100                    |

# Lesson Plan / Teaching Plan for M. Sc Chemistry Semester-I Session (2022-2023)

| Lesson Plan for Core Course - I: Inorganic Chemistry |                                                                                                               |                                                                                                                                                         |                                                                                                                                                       |  |  |  |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| CC -I                                                | Inorganic Chemistry                                                                                           | Credits: 5                                                                                                                                              | Full Marks: 70                                                                                                                                        |  |  |  |
|                                                      | Teacher: Dr. Khushbu Singh                                                                                    |                                                                                                                                                         |                                                                                                                                                       |  |  |  |
| Unit I                                               | Unit I Molecular Structure and Bonding (Weeks 1-3)                                                            |                                                                                                                                                         |                                                                                                                                                       |  |  |  |
| Week 1                                               | VSEPR Theory and W                                                                                            |                                                                                                                                                         |                                                                                                                                                       |  |  |  |
| Lecture /Topic                                       | Objective                                                                                                     | Topics Covered:                                                                                                                                         | Activity/                                                                                                                                             |  |  |  |
| <b>T</b> 4                                           | TT 1 . 11                                                                                                     | T . 1                                                                                                                                                   | Assignments                                                                                                                                           |  |  |  |
| Lecture 1: Introduction to VSEPR Theory              | Understand the Valence Shell Electron Pair Repulsion (VSEPR) theory for triatomic molecules                   | Introduction to the (VSEPR) theory. Basic VSEPR shapes: linear, trigonal planar, tetrahedral, trigonal bipyramidal, and octahedral.                     | Predict shapes of various molecules using VSEPR theory. Examples: Water, ammonia, carbon dioxide                                                      |  |  |  |
| Lecture 2: Walsh Diagrams for Triatomic Molecules    | Understand the Overview of Walsh diagrams and their importance in predicting molecular orbitals and geometry. | Walsh diagrams: Construction and molecular geometry prediction for triatomic molecules. Examples: H <sub>2</sub> O, CO <sub>2</sub>                     | Draw Walsh diagrams for simple triatomic molecules.                                                                                                   |  |  |  |
| Lecture 3:<br>dπ-pπ Bonding<br>and Bent Rule         | Explore $d\pi$ -p $\pi$ Bonding and Bent Rule.                                                                | dπ-pπ Bonding: Interaction between metal d-orbitals and ligand p-orbitals. Bent Rule: Explanation and application. Examples: Transition metal complexes | Solve problems related to hybridization and Bent's rule.                                                                                              |  |  |  |
| Lecture 4:                                           | Revision class                                                                                                | Application of VSEPR theory. $d\pi$ -p $\pi$ bonding discussion with examples.                                                                          | Predict the shape, geometry and bond angle for different polyatomic molecule. Discuss $d\pi$ -p $\pi$ bonding in $SO_4^{2-}$ , $SO_3$ , $PO_4^{3-}$ . |  |  |  |
| Lecture 5:                                           | Problem solving class                                                                                         | VSEPR, Bent Rule, dπ-<br>pπ Bonding                                                                                                                     | Solve questions related to these topics                                                                                                               |  |  |  |
| Week 2                                               | <b>Energetics of Hybridiz</b>                                                                                 | ation                                                                                                                                                   | •                                                                                                                                                     |  |  |  |
| Lecture /Topic                                       | Objective                                                                                                     | <b>Topics Covered:</b>                                                                                                                                  | Activity/                                                                                                                                             |  |  |  |
|                                                      |                                                                                                               |                                                                                                                                                         | Assignments                                                                                                                                           |  |  |  |
| Lecture 6:                                           | Discuss the types of                                                                                          | sp, sp $^2$ , sp $^3$ , dsp $^2$ , d $^2$ sp $^3$                                                                                                       | Solve problems                                                                                                                                        |  |  |  |

| Hybridization: Basic introduction                                                                                                                    | hybridization                                                                                                                                                                                                           | hybridizations. Examples: Methane,                                                                                                                                                                                                                                       | related to hybridization                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| and types with example                                                                                                                               |                                                                                                                                                                                                                         | ethylene, complex ions                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                            |
| Lecture 7:                                                                                                                                           | Determine the energy                                                                                                                                                                                                    | Energetics of                                                                                                                                                                                                                                                            |                                                                                                                                                                                              |
| Energetics of                                                                                                                                        | of hybridization                                                                                                                                                                                                        | hybridization:                                                                                                                                                                                                                                                           | hybridization, bond                                                                                                                                                                          |
| hybridization                                                                                                                                        |                                                                                                                                                                                                                         | Overview and implications.                                                                                                                                                                                                                                               | angle, bond strength etc                                                                                                                                                                     |
| Lecture 8:                                                                                                                                           | Identify and discuss                                                                                                                                                                                                    | Limitations of CFT:                                                                                                                                                                                                                                                      | Solve problems                                                                                                                                                                               |
| Limitations of                                                                                                                                       |                                                                                                                                                                                                                         | Key shortcomings.                                                                                                                                                                                                                                                        | related to Complexes                                                                                                                                                                         |
| Crystal Field                                                                                                                                        | and analyze MO                                                                                                                                                                                                          | comparison with                                                                                                                                                                                                                                                          | that don't fit CFT                                                                                                                                                                           |
| Theory (CFT)                                                                                                                                         | diagrams.                                                                                                                                                                                                               | Molecular Orbital                                                                                                                                                                                                                                                        | predictions                                                                                                                                                                                  |
|                                                                                                                                                      |                                                                                                                                                                                                                         | Theory (MOT)                                                                                                                                                                                                                                                             |                                                                                                                                                                                              |
|                                                                                                                                                      |                                                                                                                                                                                                                         | Examples: Complexes                                                                                                                                                                                                                                                      |                                                                                                                                                                                              |
|                                                                                                                                                      |                                                                                                                                                                                                                         | that don't fit CFT                                                                                                                                                                                                                                                       |                                                                                                                                                                                              |
|                                                                                                                                                      |                                                                                                                                                                                                                         | predictions                                                                                                                                                                                                                                                              |                                                                                                                                                                                              |
| Lecture 9:                                                                                                                                           | Revision session of                                                                                                                                                                                                     | Molecular orbital                                                                                                                                                                                                                                                        | Solve problems                                                                                                                                                                               |
| Molecular orbital                                                                                                                                    | Homonuclear diatomic                                                                                                                                                                                                    | diagram of O <sub>2</sub> , N <sub>2</sub> etc                                                                                                                                                                                                                           | related to                                                                                                                                                                                   |
| theory - key                                                                                                                                         | molecules                                                                                                                                                                                                               | with its bond order,                                                                                                                                                                                                                                                     | applications of                                                                                                                                                                              |
| concepts                                                                                                                                             |                                                                                                                                                                                                                         | bond length and bond                                                                                                                                                                                                                                                     | Molecular orbital                                                                                                                                                                            |
|                                                                                                                                                      |                                                                                                                                                                                                                         | strength                                                                                                                                                                                                                                                                 | theory                                                                                                                                                                                       |
| Lecture 10:                                                                                                                                          | Problem solving class                                                                                                                                                                                                   | Topics: Hybridization,                                                                                                                                                                                                                                                   | Solve problems                                                                                                                                                                               |
|                                                                                                                                                      |                                                                                                                                                                                                                         | CFT, MOT                                                                                                                                                                                                                                                                 | related to Hybridization, CFT,                                                                                                                                                               |
|                                                                                                                                                      |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                          | MOT                                                                                                                                                                                          |
| Week 3                                                                                                                                               |                                                                                                                                                                                                                         | (3.50 PX)                                                                                                                                                                                                                                                                | 1.101                                                                                                                                                                                        |
| TYCCK J                                                                                                                                              | Molecular Orbital The                                                                                                                                                                                                   | ory (MOT)                                                                                                                                                                                                                                                                |                                                                                                                                                                                              |
| Lecture                                                                                                                                              | Molecular Orbital The Objective                                                                                                                                                                                         | ory (MOT) Topics Covered:                                                                                                                                                                                                                                                | Activity/                                                                                                                                                                                    |
| Lecture                                                                                                                                              | Objective                                                                                                                                                                                                               | <b>Topics Covered:</b>                                                                                                                                                                                                                                                   | Assignments                                                                                                                                                                                  |
| Lecture 11:                                                                                                                                          | Objective  Explore the MOT for                                                                                                                                                                                          | Topics Covered:  MO diagrams, bonding                                                                                                                                                                                                                                    | Assignments Construct and                                                                                                                                                                    |
| Lecture  Lecture 11:  MOT for Hetero-                                                                                                                | Objective  Explore the MOT for Hetero-nuclear                                                                                                                                                                           | Topics Covered:  MO diagrams, bonding and antibonding orbitals                                                                                                                                                                                                           | Assignments  Construct and analyze MO                                                                                                                                                        |
| Lecture 11: MOT for Heteronuclear Diatomic                                                                                                           | Objective  Explore the MOT for Hetero-nuclear Diatomic Molecules:                                                                                                                                                       | Topics Covered:  MO diagrams, bonding and antibonding orbitals                                                                                                                                                                                                           | Assignments  Construct and analyze MO diagrams for selected                                                                                                                                  |
| Lecture 11: MOT for Hetero-                                                                                                                          | Objective  Explore the MOT for Hetero-nuclear Diatomic Molecules: Overview and                                                                                                                                          | Topics Covered:  MO diagrams, bonding and antibonding orbitals                                                                                                                                                                                                           | Assignments  Construct and analyze MO                                                                                                                                                        |
| Lecture 11: MOT for Heteronuclear Diatomic                                                                                                           | Objective  Explore the MOT for Hetero-nuclear Diatomic Molecules:                                                                                                                                                       | Topics Covered:  MO diagrams, bonding and antibonding orbitals                                                                                                                                                                                                           | Assignments  Construct and analyze MO diagrams for selected                                                                                                                                  |
| Lecture 11: MOT for Heteronuclear Diatomic Molecules  Lecture 12: MOT for Hetero-                                                                    | Objective  Explore the MOT for Hetero-nuclear Diatomic Molecules: Overview and implications.                                                                                                                            | Topics Covered:  MO diagrams, bonding and antibonding orbitals Examples: CO, NO                                                                                                                                                                                          | Assignments  Construct and analyze MO diagrams for selected molecules.                                                                                                                       |
| Lecture 11: MOT for Heteronuclear Diatomic Molecules  Lecture 12: MOT for Heteronuclear Triatomic                                                    | Objective  Explore the MOT for Hetero-nuclear Diatomic Molecules: Overview and implications.  Explore the MOT for Hetero-nuclear Triatomic Molecules:                                                                   | Topics Covered:  MO diagrams, bonding and antibonding orbitals Examples: CO, NO  MO diagrams, bonding                                                                                                                                                                    | Assignments  Construct and analyze MO diagrams for selected molecules.  Construct and analyze MO diagrams for selected                                                                       |
| Lecture 11: MOT for Heteronuclear Diatomic Molecules  Lecture 12: MOT for Hetero-                                                                    | Explore the MOT for Hetero-nuclear Diatomic Molecules: Overview and implications.  Explore the MOT for Hetero-nuclear Triatomic Molecules: Overview and                                                                 | Topics Covered:  MO diagrams, bonding and antibonding orbitals Examples: CO, NO  MO diagrams, bonding and antibonding orbitals                                                                                                                                           | Assignments  Construct and analyze MO diagrams for selected molecules.  Construct and analyze MO                                                                                             |
| Lecture 11: MOT for Heteronuclear Diatomic Molecules  Lecture 12: MOT for Heteronuclear Triatomic Molecules                                          | Explore the MOT for Hetero-nuclear Diatomic Molecules: Overview and implications.  Explore the MOT for Hetero-nuclear Triatomic Molecules: Overview and implications.                                                   | Topics Covered:  MO diagrams, bonding and antibonding orbitals Examples: CO, NO  MO diagrams, bonding and antibonding orbitals Examples: H <sub>2</sub> O, CO <sub>2</sub>                                                                                               | Assignments  Construct and analyze MO diagrams for selected molecules.  Construct and analyze MO diagrams for selected molecules.                                                            |
| Lecture 11: MOT for Heteronuclear Diatomic Molecules  Lecture 12: MOT for Heteronuclear Triatomic Molecules  Lecture 13:                             | Explore the MOT for Hetero-nuclear Diatomic Molecules: Overview and implications.  Explore the MOT for Hetero-nuclear Triatomic Molecules: Overview and implications.  σ- and π-bonding                                 | Topics Covered:  MO diagrams, bonding and antibonding orbitals Examples: CO, NO  MO diagrams, bonding and antibonding orbitals Examples: H <sub>2</sub> O, CO <sub>2</sub> Molecular Orbital                                                                             | Assignments  Construct and analyze MO diagrams for selected molecules.  Construct and analyze MO diagrams for selected molecules.  Construct and analyze and analyze and molecules.          |
| Lecture 11:  MOT for Heteronuclear Diatomic Molecules  Lecture 12:  MOT for Heteronuclear Triatomic Molecules  Lecture 13:  MOT for σ- and           | Explore the MOT for Hetero-nuclear Diatomic Molecules: Overview and implications.  Explore the MOT for Hetero-nuclear Triatomic Molecules: Overview and implications.  σ- and π-bonding interactions in metal           | Topics Covered:  MO diagrams, bonding and antibonding orbitals Examples: CO, NO  MO diagrams, bonding and antibonding orbitals Examples: H <sub>2</sub> O, CO <sub>2</sub> Molecular Orbital Theory (MOT) for σ-                                                         | Assignments  Construct and analyze MO diagrams for selected molecules.  Construct and analyze MO diagrams for selected molecules.  Construct and analyze MO diagrams for selected molecules. |
| Lecture 11: MOT for Heteronuclear Diatomic Molecules  Lecture 12: MOT for Heteronuclear Triatomic Molecules  Lecture 13:                             | Explore the MOT for Hetero-nuclear Diatomic Molecules: Overview and implications.  Explore the MOT for Hetero-nuclear Triatomic Molecules: Overview and implications.  σ- and π-bonding                                 | Topics Covered:  MO diagrams, bonding and antibonding orbitals Examples: CO, NO  MO diagrams, bonding and antibonding orbitals Examples: H <sub>2</sub> O, CO <sub>2</sub> Molecular Orbital Theory (MOT) for σ-and π-bonding.                                           | Assignments  Construct and analyze MO diagrams for selected molecules.  Construct and analyze MO diagrams for selected molecules.  Construct and analyze and analyze and molecules.          |
| Lecture 11:  MOT for Heteronuclear Diatomic Molecules  Lecture 12:  MOT for Heteronuclear Triatomic Molecules  Lecture 13:  MOT for σ- and           | Explore the MOT for Hetero-nuclear Diatomic Molecules: Overview and implications.  Explore the MOT for Hetero-nuclear Triatomic Molecules: Overview and implications.  σ- and π-bonding interactions in metal           | Topics Covered:  MO diagrams, bonding and antibonding orbitals Examples: CO, NO  MO diagrams, bonding and antibonding orbitals Examples: H <sub>2</sub> O, CO <sub>2</sub> Molecular Orbital Theory (MOT) for σ-and π-bonding. Examples: O <sub>2</sub> , N <sub>2</sub> | Assignments  Construct and analyze MO diagrams for selected molecules.  Construct and analyze MO diagrams for selected molecules.  Construct and analyze MO diagrams for selected molecules. |
| Lecture 11:  MOT for Heteronuclear Diatomic Molecules  Lecture 12:  MOT for Heteronuclear Triatomic Molecules  Lecture 13:  MOT for σ- and π-Bonding | Explore the MOT for Hetero-nuclear Diatomic Molecules: Overview and implications.  Explore the MOT for Hetero-nuclear Triatomic Molecules: Overview and implications.  σ- and π-bonding interactions in metal complexes | Topics Covered:  MO diagrams, bonding and antibonding orbitals Examples: CO, NO  MO diagrams, bonding and antibonding orbitals Examples: H <sub>2</sub> O, CO <sub>2</sub> Molecular Orbital Theory (MOT) for σ-and π-bonding. Examples: O <sub>2</sub> , N <sub>2</sub> | Construct and analyze MO diagrams for selected molecules.  Construct and analyze MO diagrams for selected molecules.  Construct and analyze MO diagrams for selected molecules.              |

| Lecture 15:  Unit II  Week 4                       | Class test of molecular structure and bonding  Magnetochemistry (Wo Basic Concepts | VSEPR, Walsh Diagram, Bent Rule, Hybridization, CFT, MOT eeks 4-5)                                   | Solve problems related to the mentioned topics                                                                                              |
|----------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Lecture                                            | Objective Objective                                                                | <b>Topics Covered</b>                                                                                | Activity/                                                                                                                                   |
|                                                    |                                                                                    |                                                                                                      | Assignments                                                                                                                                 |
| Lecture 16: Electron-Electron Interaction          | Study the basics of electron-electron interactions.                                | Electron-electron interactions: Principles and effects.                                              |                                                                                                                                             |
| Lecture 17: Rules governing electronic transitions | Study the selection rules for electronic transitions in complexes                  | Spin selection rule,<br>Laporte selection rule,<br>Beer Lamberts law,<br>Width of absorption<br>band | Solve problems based on selection rules                                                                                                     |
| Lecture 18:<br>Term Symbols                        | Study the basics of term symbols.                                                  | Term symbols: Calculation and interpretation of term symbols for metal complexes                     | Calculate term symbols and interpret their significance in metal complexes.  Examples:  [Fe(CN)6] <sup>4-</sup> ,  [Co(NH3)6] <sup>3+</sup> |
| Lecture 19:<br>Spin-Orbit<br>Coupling              | Study the basics of spin-orbit coupling.                                           | Spin-orbit coupling and its impact on magnetic properties.                                           | Calculate Spin-orbit splitting in transition metals                                                                                         |
| Lecture 20:                                        | Revision class                                                                     | Term symbols, Spin-<br>Orbit Coupling                                                                | Calculate term symbols and interpret their significance in metal complexes. Calculate Spin-orbit splitting in transition metals             |
| Week 5                                             | Magnetic Properties                                                                |                                                                                                      |                                                                                                                                             |
| Lecture                                            | Objective                                                                          | <b>Topics Covered</b>                                                                                | Activity/<br>Assignments                                                                                                                    |
| Corbital contribution: Effect of the ligand field  | Study the basic introduction about the ligand field effect on orbital contribution | Ligand field effect on orbital contribution in octahedral and tetrahedral complexes                  |                                                                                                                                             |
| Lecture 22: Quenching of Orbital                   | Quenching of Orbital<br>Contribution and<br>Anomalous Magnetic                     | Orbital contribution to magnetism, anomalous moments                                                 | Examine and discuss case studies of anomalous magnetic                                                                                      |

| Contribution and<br>Anomalous<br>Magnetic<br>Moments                                                                                                                                | Moments                                                                                                                                                                              | Examples: La <sup>3+</sup> , Ce <sup>3+</sup>                                                                                                                                                                                        | moments in metal complexes.                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Lecture 23: Magnetic Properties of Inner Transition Elements                                                                                                                        | Analyze magnetic properties, including anomalous magnetic moments and their significance.                                                                                            | Magnetism in lanthanides and actinides Examples: Gadolinium, Uranium                                                                                                                                                                 | Examine and discuss case studies of anomalous magnetic moments in metal complexes.           |
| Lecture 24: Magnetic Properties and Anomalies                                                                                                                                       | Analyze magnetic properties, including anomalous magnetic moments and their significance.                                                                                            | Anomalous magnetic moments: Causes and explanations.                                                                                                                                                                                 | Examine and discuss case studies of anomalous magnetic moments in metal complexes.           |
| Lecture 25:                                                                                                                                                                         | Review the key concepts                                                                                                                                                              | Quenching of Orbital Contribution and Anomalous Magnetic Moments and Magnetism in lanthanides and actinides                                                                                                                          | Solve problems related to magnetic moment in Transition and inner Transition metal complexes |
|                                                                                                                                                                                     | 1                                                                                                                                                                                    |                                                                                                                                                                                                                                      |                                                                                              |
| Unit III                                                                                                                                                                            |                                                                                                                                                                                      | ium in Solution (Weeks 6                                                                                                                                                                                                             | -7)                                                                                          |
| Unit III Week 6 Lecture                                                                                                                                                             | Metal-Ligand Equilibr Formation Constants a Objective                                                                                                                                |                                                                                                                                                                                                                                      | Activity/                                                                                    |
| Week 6 Lecture  Lecture 26: Thermodynamic and kinetic stability of complexes,                                                                                                       | Formation Constants a                                                                                                                                                                | Thermodynamic and kinetic stability of complexes, Stepwise and Overall Formation Constants                                                                                                                                           |                                                                                              |
| Week 6 Lecture  Lecture 26: Thermodynamic and kinetic stability of complexes, Stepwise and Overall Formation                                                                        | Formation Constants a Objective  Explain the basics behind the Thermodynamic and kinetic stability of complexes, Stepwise and Overall                                                | Thermodynamic and kinetic stability of complexes, Stepwise and Overall Formation Constants Examples: [Ni(NH3)6] <sup>2+</sup> ,                                                                                                      | Activity/ Assignments Calculate formation constants and discuss                              |
| Week 6 Lecture  Lecture 26: Thermodynamic and kinetic stability of complexes, Stepwise and Overall Formation Constants  Lecture 27: Relation between Stepwise and Overall Formation | Explain the basics behind the Thermodynamic and kinetic stability of complexes, Stepwise and Overall Formation Constants  Derive the relation between Stepwise and Overall Formation | Topics Covered  Thermodynamic and kinetic stability of complexes, Stepwise and Overall Formation Constants Examples: [Ni(NH3)6] <sup>2+</sup> , [CuCl4] <sup>2-</sup> Relationship between Stepwise and Overall Formation Constants, | Activity/ Assignments Calculate formation constants and discuss                              |

| Chelate effect                                                                                                                                                                                  | affecting stability.                                                                                                                                                                                                                                                                  | thermodynamic origin.                                                                                                                                                                                                                               | constants and discuss trends in stability.                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Lecture 30:                                                                                                                                                                                     | Review the key                                                                                                                                                                                                                                                                        | Problems based on                                                                                                                                                                                                                                   | Discuss the trends in                                                                        |
|                                                                                                                                                                                                 | concepts based on                                                                                                                                                                                                                                                                     | stability of complexes                                                                                                                                                                                                                              | stability of                                                                                 |
|                                                                                                                                                                                                 | stability of complexes                                                                                                                                                                                                                                                                | and chelate effect                                                                                                                                                                                                                                  | complexes                                                                                    |
| Week 7                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                       | for Determining Format                                                                                                                                                                                                                              |                                                                                              |
| Lecture Objective                                                                                                                                                                               |                                                                                                                                                                                                                                                                                       | Topics Covered                                                                                                                                                                                                                                      | Activity/                                                                                    |
| 2000                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                       | Topics covered                                                                                                                                                                                                                                      | Assignments                                                                                  |
| Lecture 31:                                                                                                                                                                                     | Learn methods for                                                                                                                                                                                                                                                                     | pH-metry: Principles                                                                                                                                                                                                                                | Perform calculations                                                                         |
| Methods for                                                                                                                                                                                     | determining formation                                                                                                                                                                                                                                                                 | and applications.                                                                                                                                                                                                                                   | and interpret data                                                                           |
| Determining                                                                                                                                                                                     | constants using pH                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                     | from pH-metry.                                                                               |
| Formation                                                                                                                                                                                       | metry.                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                     |                                                                                              |
| Constants using                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                     |                                                                                              |
| pH-metry.                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                     |                                                                                              |
| Lecture 32:                                                                                                                                                                                     | Learn methods for                                                                                                                                                                                                                                                                     | Spectrophotometry:                                                                                                                                                                                                                                  | Perform calculations                                                                         |
| Methods for                                                                                                                                                                                     | determining formation                                                                                                                                                                                                                                                                 | Techniques and                                                                                                                                                                                                                                      | and interpret data                                                                           |
| Determining                                                                                                                                                                                     | constants using                                                                                                                                                                                                                                                                       | analysis.                                                                                                                                                                                                                                           | from                                                                                         |
| Formation                                                                                                                                                                                       | spectrophotometry.                                                                                                                                                                                                                                                                    | Calibration curves                                                                                                                                                                                                                                  | spectrophotometry.                                                                           |
| Constants using                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                     |                                                                                              |
| spectrophotometry                                                                                                                                                                               |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                     |                                                                                              |
| Lecture 33:                                                                                                                                                                                     | Mid-Term Exam                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                     |                                                                                              |
| Unit IV                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                       | f Transition Metal Comp                                                                                                                                                                                                                             | lexes (Weeks 8-10)                                                                           |
| Week 8                                                                                                                                                                                          | Kinetics and Mechanis                                                                                                                                                                                                                                                                 | ms                                                                                                                                                                                                                                                  |                                                                                              |
|                                                                                                                                                                                                 | 0.7.4                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                     | 4 .4 4. /                                                                                    |
| Lecture                                                                                                                                                                                         | Objective                                                                                                                                                                                                                                                                             | <b>Topics Covered</b>                                                                                                                                                                                                                               | Activity/<br>Assignments                                                                     |
| Lecture Lecture 34:                                                                                                                                                                             | Objective Study the concept of                                                                                                                                                                                                                                                        | •                                                                                                                                                                                                                                                   | _                                                                                            |
|                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                   | Assignments                                                                                  |
| Lecture 34:                                                                                                                                                                                     | Study the concept of                                                                                                                                                                                                                                                                  | Inert vs. labile complexes, kinetic aspects.                                                                                                                                                                                                        | Assignments  Calculate kinetic aspects of [Co(NH3)6] <sup>3+</sup> vs. [CoCl4] <sup>2-</sup> |
| Lecture 34: Inert and Labile                                                                                                                                                                    | Study the concept of labile and inert complex.  Study VBT                                                                                                                                                                                                                             | Inert vs. labile complexes, kinetic aspects.                                                                                                                                                                                                        | Assignments  Calculate kinetic aspects of [Co(NH3)6] <sup>3+</sup> vs. [CoCl4] <sup>2-</sup> |
| Lecture 34: Inert and Labile Complexes                                                                                                                                                          | Study the concept of labile and inert complex.  Study VBT explanation of lability                                                                                                                                                                                                     | Inert vs. labile complexes, kinetic aspects.  VBT explanation of lability and inertness,                                                                                                                                                            | Assignments  Calculate kinetic aspects of [Co(NH3)6] <sup>3+</sup> vs. [CoCl4] <sup>2-</sup> |
| Lecture 34: Inert and Labile Complexes  Lecture 35: Inert                                                                                                                                       | Study the concept of labile and inert complex.  Study VBT explanation of lability and inertness,                                                                                                                                                                                      | Inert vs. labile complexes, kinetic aspects.  VBT explanation of lability and inertness, Taube's explanation of                                                                                                                                     | Assignments  Calculate kinetic aspects of [Co(NH3)6] <sup>3+</sup> vs. [CoCl4] <sup>2-</sup> |
| Lecture 34: Inert and Labile Complexes  Lecture 35: Inert and Labile                                                                                                                            | Study the concept of labile and inert complex.  Study VBT explanation of lability and inertness, Taube's explanation of                                                                                                                                                               | Inert vs. labile complexes, kinetic aspects.  VBT explanation of lability and inertness, Taube's explanation of                                                                                                                                     | Assignments  Calculate kinetic aspects of [Co(NH3)6] <sup>3+</sup> vs. [CoCl4] <sup>2-</sup> |
| Lecture 34: Inert and Labile Complexes  Lecture 35: Inert and Labile                                                                                                                            | Study the concept of labile and inert complex.  Study VBT explanation of lability and inertness,                                                                                                                                                                                      | Inert vs. labile complexes, kinetic aspects.  VBT explanation of lability and inertness, Taube's explanation of                                                                                                                                     | Assignments  Calculate kinetic aspects of [Co(NH3)6] <sup>3+</sup> vs. [CoCl4] <sup>2-</sup> |
| Lecture 34: Inert and Labile Complexes  Lecture 35: Inert and Labile                                                                                                                            | Study the concept of labile and inert complex.  Study VBT explanation of lability and inertness, Taube's explanation of                                                                                                                                                               | Inert vs. labile complexes, kinetic aspects.  VBT explanation of lability and inertness, Taube's explanation of lability and inertness                                                                                                              | Assignments  Calculate kinetic aspects of [Co(NH3)6] <sup>3+</sup> vs. [CoCl4] <sup>2-</sup> |
| Lecture 34: Inert and Labile Complexes  Lecture 35: Inert and Labile Complexes                                                                                                                  | Study the concept of labile and inert complex.  Study VBT explanation of lability and inertness, Taube's explanation of lability and inertness                                                                                                                                        | Inert vs. labile complexes, kinetic aspects.  VBT explanation of lability and inertness, Taube's explanation of                                                                                                                                     | Assignments  Calculate kinetic aspects of [Co(NH3)6] <sup>3+</sup> vs. [CoCl4] <sup>2-</sup> |
| Lecture 34: Inert and Labile Complexes  Lecture 35: Inert and Labile Complexes  Lecture 36:                                                                                                     | Study the concept of labile and inert complex.  Study VBT explanation of lability and inertness, Taube's explanation of lability and inertness  Study the kinetic                                                                                                                     | Inert vs. labile complexes, kinetic aspects.  VBT explanation of lability and inertness, Taube's explanation of lability and inertness  Kinetic application of                                                                                      | Assignments  Calculate kinetic aspects of [Co(NH3)6] <sup>3+</sup> vs. [CoCl4] <sup>2-</sup> |
| Lecture 34: Inert and Labile Complexes  Lecture 35: Inert and Labile Complexes  Lecture 36: Kinetic                                                                                             | Study the concept of labile and inert complex.  Study VBT explanation of lability and inertness, Taube's explanation of lability and inertness  Study the kinetic application of VBT                                                                                                  | Inert vs. labile complexes, kinetic aspects.  VBT explanation of lability and inertness, Taube's explanation of lability and inertness  Kinetic application of                                                                                      | Assignments  Calculate kinetic aspects of [Co(NH3)6] <sup>3+</sup> vs. [CoCl4] <sup>2-</sup> |
| Lecture 34: Inert and Labile Complexes  Lecture 35: Inert and Labile Complexes  Lecture 36: Kinetic application of VBT and CFT Lecture 37:                                                      | Study the concept of labile and inert complex.  Study VBT explanation of lability and inertness, Taube's explanation of lability and inertness  Study the kinetic application of VBT and CFT                                                                                          | Inert vs. labile complexes, kinetic aspects.  VBT explanation of lability and inertness, Taube's explanation of lability and inertness  Kinetic application of VBT and CFT  Ligand substitution                                                     | Assignments  Calculate kinetic aspects of [Co(NH3)6] <sup>3+</sup> vs. [CoCl4] <sup>2-</sup> |
| Lecture 34: Inert and Labile Complexes  Lecture 35: Inert and Labile Complexes  Lecture 36: Kinetic application of VBT and CFT                                                                  | Study the concept of labile and inert complex.  Study VBT explanation of lability and inertness, Taube's explanation of lability and inertness  Study the kinetic application of VBT and CFT                                                                                          | Inert vs. labile complexes, kinetic aspects.  VBT explanation of lability and inertness, Taube's explanation of lability and inertness  Kinetic application of VBT and CFT                                                                          | Assignments  Calculate kinetic aspects of [Co(NH3)6] <sup>3+</sup> vs. [CoCl4] <sup>2-</sup> |
| Lecture 34: Inert and Labile Complexes  Lecture 35: Inert and Labile Complexes  Lecture 36: Kinetic application of VBT and CFT Lecture 37:                                                      | Study the concept of labile and inert complex.  Study VBT explanation of lability and inertness, Taube's explanation of lability and inertness  Study the kinetic application of VBT and CFT                                                                                          | Inert vs. labile complexes, kinetic aspects.  VBT explanation of lability and inertness, Taube's explanation of lability and inertness  Kinetic application of VBT and CFT  Ligand substitution                                                     | Assignments  Calculate kinetic aspects of [Co(NH3)6] <sup>3+</sup> vs. [CoCl4] <sup>2-</sup> |
| Lecture 34: Inert and Labile Complexes  Lecture 35: Inert and Labile Complexes  Lecture 36: Kinetic application of VBT and CFT Lecture 37: Types of reaction                                    | Study the concept of labile and inert complex.  Study VBT explanation of lability and inertness, Taube's explanation of lability and inertness  Study the kinetic application of VBT and CFT  Study the basics of different types of                                                  | Inert vs. labile complexes, kinetic aspects.  VBT explanation of lability and inertness, Taube's explanation of lability and inertness  Kinetic application of VBT and CFT  Ligand substitution reaction, Electron transfer reaction                | Assignments  Calculate kinetic aspects of [Co(NH3)6] <sup>3+</sup> vs. [CoCl4] <sup>2-</sup> |
| Lecture 34: Inert and Labile Complexes  Lecture 35: Inert and Labile Complexes  Lecture 36: Kinetic application of VBT and CFT Lecture 37: Types of reaction undergone by complexes Lecture 38: | Study the concept of labile and inert complex.  Study VBT explanation of lability and inertness, Taube's explanation of lability and inertness  Study the kinetic application of VBT and CFT  Study the basics of different types of reaction of the complexes  Study the kinetics of | Inert vs. labile complexes, kinetic aspects.  VBT explanation of lability and inertness, Taube's explanation of lability and inertness  Kinetic application of VBT and CFT  Ligand substitution reaction, Electron transfer reaction  Mechanisms of | Calculate kinetic aspects of [Co(NH3)6] <sup>3+</sup> vs. [CoCl4] <sup>2-</sup>              |
| Lecture 34: Inert and Labile Complexes  Lecture 35: Inert and Labile Complexes  Lecture 36: Kinetic application of VBT and CFT  Lecture 37: Types of reaction undergone by complexes            | Study the concept of labile and inert complex.  Study VBT explanation of lability and inertness, Taube's explanation of lability and inertness  Study the kinetic application of VBT and CFT  Study the basics of different types of reaction of the complexes                        | Inert vs. labile complexes, kinetic aspects.  VBT explanation of lability and inertness, Taube's explanation of lability and inertness  Kinetic application of VBT and CFT  Ligand substitution reaction, Electron transfer reaction                | Calculate kinetic aspects of [Co(NH3)6] <sup>3+</sup> vs. [CoCl4] <sup>2-</sup>              |

| Substitution mechanisms.                                                |                                                                                                                                            | Examples: [Co(NH3)5Cl] <sup>2+</sup>                                                                           |                                                                                |  |  |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|
| Week 9                                                                  | Kinetics of Substitution                                                                                                                   |                                                                                                                |                                                                                |  |  |
| Lecture                                                                 | Objective                                                                                                                                  | <b>Topics Covered</b>                                                                                          | Activity/<br>Assignments                                                       |  |  |
| Lecture 39: Acid and Base Hydrolysis                                    | Study the kinetics of octahedral substitution reactions and related mechanisms.                                                            | hydrolysis reactions.<br>Examples: Hydrolysis<br>of [Fe(H2O)6] <sup>3+</sup>                                   | Discuss examples and applications.                                             |  |  |
| Lecture 40: CB Mechanism and Evidence of CB mechanism,                  | Study the kinetics of octahedral substitution reactions and related mechanisms.                                                            | mechanism,                                                                                                     | Discuss examples and applications.                                             |  |  |
| Anation reaction, reaction without M_L bond cleavage                    | Study the kinetics of octahedral substitution reactions and related mechanisms.                                                            |                                                                                                                |                                                                                |  |  |
| Lecture 42:                                                             | $ \begin{array}{cccc} Review & the & key \\ concepts & related & to \\ S_N1, \ S_N2, \ S_N1CB \ and \\ Anation \ reaction \\ \end{array} $ | Key concepts related to $S_N1$ , $S_N2$ , $S_N1CB$ and Anation reaction                                        |                                                                                |  |  |
| Lecture 43:                                                             |                                                                                                                                            |                                                                                                                |                                                                                |  |  |
| Week 10                                                                 | Electron Transfer Reac                                                                                                                     |                                                                                                                |                                                                                |  |  |
| Lecture                                                                 | Objective                                                                                                                                  | <b>Topics Covered</b>                                                                                          | Activity/<br>Assignments                                                       |  |  |
| Lecture 44:<br>substitution<br>reactions in square<br>planar complexes, | Explore the trans effect                                                                                                                   | The trans effect: Theories and applications. Examples: [PtCl4] <sup>2-</sup>                                   | Discuss examples and applications of the trans effect.                         |  |  |
| Lecture 45: Introduction to Electron transfer reaction                  | Explore the theories of electron transfer reactions.                                                                                       | Electron transfer reactions: Inner and outer sphere mechanisms Examples: [Fe(bipy)3] <sup>2+</sup>             | Discuss examples and applications of the electron transfer mechanisms.         |  |  |
| Lecture 46: Inner and Outer Sphere reaction with mechanism              | Detailed mechanism of<br>Inner and outer sphere<br>mechanism                                                                               | Mechanism of Inner<br>and outer sphere<br>mechanism, Difference<br>between Inner and outer<br>sphere reactions | Discuss examples<br>and applications of<br>the electron transfer<br>mechanisms |  |  |
| Lecture 47: Marcus-Hush                                                 | Explore theory of                                                                                                                          | Marcus-Hush theory.                                                                                            | Discuss examples and applications of                                           |  |  |

| Lecture 48:                                                                                         | Revision class                                                                  | Nucleophilic<br>Substitution Reaction,                                                                          | Discuss examples of mentioned reactions.                                       |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
|                                                                                                     |                                                                                 | Trans effect, Electron transfer reactions                                                                       |                                                                                |
| Unit V                                                                                              |                                                                                 | Acids and Salts (Weeks                                                                                          | 11)                                                                            |
| Week 11                                                                                             | Isopoly and Heteropoly                                                          |                                                                                                                 |                                                                                |
| Lecture                                                                                             | Objective                                                                       | Topics Covered                                                                                                  | Activity/                                                                      |
| Lecture 48: Introduction to Isopoly Acids and Salts                                                 | Study isopoly and salts.                                                        | Structure and properties of isopoly acids                                                                       | Assignments  Draw and analyze the structures of isopoly and heteropoly anions. |
| Lecture 49: ,<br>Introduction to<br>Isopoly Acids and<br>Salts focusing on<br>Mo and W<br>compounds | Study of Isopoly Acids<br>and Salts focusing on<br>Mo and W compounds           | Isopoly Acids and Salts focusing on Mo and W compounds.  Examples: [MoO4] <sup>2-</sup> , [W6O19] <sup>2-</sup> |                                                                                |
| Lecture 50: Introduction to Heteropoly Acids and Salts                                              | Study heteropoly acids and salts, focusing on Mo and W compounds.               | Structure and properties of heteropoly acids Examples: [SiW12O40] <sup>4-</sup>                                 | Draw and analyze the structures of isopoly and heteropoly anions.              |
| Lecture 51: Structure of Isopoly and Heteropoly Anions.                                             | Study detailed structure and bonding of isopoly and heteropoly acids and salts. | Detailed structure and bonding Examples: Structure analysis techniques                                          | Draw and analyze the structures of isopoly and heteropoly anions.              |
| Lecture 52:                                                                                         | Revision class                                                                  | Isopoly and Heteropoly<br>Acids and Salts                                                                       | Discussed questions<br>based on the<br>mentioned topic                         |
| Week 12                                                                                             | Mid Semester Exam ar                                                            | nd Presentation                                                                                                 |                                                                                |
| Lecture                                                                                             | Objective                                                                       | Topics Covered                                                                                                  | Activity/<br>Assignments                                                       |
| Lecture 53:                                                                                         | Prepare for exam                                                                | 2 <sup>nd</sup> Mid-term exam                                                                                   |                                                                                |
| Lecture 54:                                                                                         |                                                                                 | Presentation                                                                                                    |                                                                                |
| Lecture 55:                                                                                         |                                                                                 | Presentation                                                                                                    |                                                                                |
| Week 13                                                                                             | Review and Exam Prep                                                            |                                                                                                                 |                                                                                |
| Lecture                                                                                             | Objective                                                                       | <b>Topics Covered</b>                                                                                           | Activity/<br>Assignments                                                       |
| Lecture 56:                                                                                         | Review key concepts,<br>problem-solving<br>sessions                             | Comprehensive Review of All Units                                                                               |                                                                                |
| Lecture 57:                                                                                         | Review key concepts,                                                            | Comprehensive Review                                                                                            |                                                                                |

|                                  | problem-solving      | of All Units             |                  |
|----------------------------------|----------------------|--------------------------|------------------|
|                                  | sessions             |                          |                  |
| Lecture 58: Review key concepts, |                      | Comprehensive Review     |                  |
|                                  | problem-solving      | of All Units             |                  |
|                                  | sessions             |                          |                  |
| Week 14                          | Mock Exam and Discu  | ssion                    |                  |
| Lecture                          | Objective            | Topics Covered           | Activity/        |
|                                  |                      | -                        | Assignments      |
| Lecture 59:                      | Review key concepts, | Practice exam            |                  |
|                                  | problem-solving      | questions, discuss       |                  |
|                                  | sessions             | answers and clarify      |                  |
|                                  |                      | doubts                   |                  |
| Lecture 60:                      | Review key concepts, | Practice exam            |                  |
|                                  | problem-solving      | questions, discuss       |                  |
|                                  | sessions             | answers and clarify      |                  |
|                                  |                      | doubts                   |                  |
| Lecture 61:                      | Review key concepts, | Practice exam            |                  |
|                                  | problem-solving      | questions, discuss       |                  |
|                                  | sessions             | answers and clarify      |                  |
|                                  |                      | doubts                   |                  |
| Assessment                       | Throughout the       | Short quizzes after each | Problem sets and |
|                                  | semester, based on   | unit to test             | case studies.    |
|                                  | each unit            | understanding.           |                  |

| Lesson Plan for Core Course - II: Physical Chemistry  |                                                                                 |                                                                                                                                                                                                                                                                                                |                                                                                                                                                      |  |  |  |
|-------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| CC -II                                                | Physical                                                                        | Credits: 5                                                                                                                                                                                                                                                                                     | Full Marks: 70                                                                                                                                       |  |  |  |
|                                                       | Chemistry                                                                       |                                                                                                                                                                                                                                                                                                |                                                                                                                                                      |  |  |  |
| Teacher: Dr. Kumari Seema                             |                                                                                 |                                                                                                                                                                                                                                                                                                |                                                                                                                                                      |  |  |  |
| Unit I Macromolecules and Polymer Science (Week- 1-3) |                                                                                 |                                                                                                                                                                                                                                                                                                |                                                                                                                                                      |  |  |  |
| Week 1                                                | ,                                                                               | Introduction, Kinetics and Mechanism of Polymerisation.                                                                                                                                                                                                                                        |                                                                                                                                                      |  |  |  |
| Lecture /Topic                                        | Objective                                                                       | Topics Covered:                                                                                                                                                                                                                                                                                | Activity/<br>Assignments                                                                                                                             |  |  |  |
| Lecture 1:<br>Introduction to<br>Polymers             | Understand the types of polymers and their importance in chemistry and industry | Types of Polymers:  Natural Polymers: Examples (e.g., proteins, nucleic acids, polysaccharides).  Synthetic Polymers: Types and examples (e.g., addition polymers like polyethylene, condensation polymers like nylon).  Specialty Polymers: Conductive polymers, biodegradable polymers, etc. | Exercises on identifying and classifying polymers from given examples.  Group activity: Classify various given polymers based on different criteria. |  |  |  |
| Classification of Polymers Types of Polymers          | Discuss thermoplastics vs. thermosetting polymers.                              | <ul> <li>□ Based on source: Natural, Synthetic, and Semi-Synthetic Polymers</li> <li>□ Based on structure: Linear, Branched, Cross-linked</li> <li>□ Based on polymerization mechanism: Addition vs. Condensation polymers</li> </ul>                                                          | Write a brief report comparing addition and condensation polymers with examples.                                                                     |  |  |  |
| Lecture 3:<br>Copolymers                              | Brief discussion<br>on polymer<br>composites and<br>their<br>applications.      | ☐ Types of copolymers: alternating, block, random, graft ☐ Importance of copolymerization in tailoring properties                                                                                                                                                                              | Find and describe<br>the properties and<br>applications of a<br>commonly used<br>copolymer.                                                          |  |  |  |
| Lecture 4:<br>Polymer Blends                          | □ Polymer blends and alloys: why blending is done                               | Example-based discussion on commercial copolymers (e.g., SBR, Nylon 6,6).                                                                                                                                                                                                                      |                                                                                                                                                      |  |  |  |
| Lecture 5: Kinetics of Polymerization                 | Learn about the kinetics of polymerization.                                     | <ul> <li>Rate laws and reaction rates for different types of polymerizations.</li> <li>Factors Affecting Polymerization:</li> <li>Temperature, pressure, catalysts, and monomer concentration.</li> </ul>                                                                                      | Discuss the impact of different variables on polymerization rates and mechanisms.                                                                    |  |  |  |
| Week 2                                                | Kinetics and Med                                                                | chanisms of Polymerization                                                                                                                                                                                                                                                                     |                                                                                                                                                      |  |  |  |
| Lecture /Topic                                        | Objective                                                                       | <b>Topics Covered:</b>                                                                                                                                                                                                                                                                         | Activity/<br>Assignments                                                                                                                             |  |  |  |

| polymerization: initiation, propagation, termination  Initiate a discussion on the factors affecting polymerization rate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Lecture 7: Learn about the  Detailed mechanism of free radical  Draw th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e free     |
| Free Radical mechanisms of polymerization radical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
| Polymerization polymerization.   Initiation: thermal, photochemical, polymerizat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ion        |
| and redox methods process or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n the      |
| ☐ Propagation and termination reactions   board, brown brow | eaking     |
| ☐ Inhibitors and retarders down each s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | step.      |
| ☐ Discuss the effects of inhibitors on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| the reaction rate and polymer structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| Lecture 8:   Research   □   Mechanism   of   cationic   □   Draw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and        |
| Ionic anionic polymerization explain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | the        |
| Polymerization   polymerization     Mechanism of anionic polymerization   mechanism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | for        |
| (Cationic and and find an Differences between radical and ionic isobutylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| Anionic) industrial use polymerizations polymerizat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ationic    |
| polymer polymerizations (e.g., living polymers) polymerizat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ion.       |
| produced by this  Compare chain termination in radical ws. ionic polymerizations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
| method.       vs. ionic polymerizations.         Lecture 9:       □ Analyze the □ Differences between chain-growth □ Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | work:      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | blems      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | others'    |
| polyesters (e.g., (condensation) polymerization equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for        |
| PET) and $\square$ Kinetics of step-growth determining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| polyamides polymerization: Carothers' equation degree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | of         |
| (e.g., Nylon).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ion.       |
| Lecture 10: Research anionic polymerization and Write a sur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nmary      |
| find an industrial use case for a polymer on the ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ole of     |
| produced by this method. catalysts in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | step-      |
| growth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| polymerizat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ion.       |
| Week 3 Molecular Mass of Polymers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
| Lecture Objective Topics Covered: Activity/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>t</b> a |
| Lecture 11: ☐ Perform ☐ Definition of number-average Find examp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| Number-Average calculations of molecular mass (Mn) polymers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | with       |
| and Weight- Mn and Mw   Definition of weight-average high and lover the second |            |
| Average from a given molecular mass (Mw) values, expl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
| Molecular Mass   polymer   Differences between Mn and Mw, and   their   uses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _          |
| distribution the concept of polydispersity index properties.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |

|                   | dataset.           | (PDI)                                                            |                                   |
|-------------------|--------------------|------------------------------------------------------------------|-----------------------------------|
|                   | dataset.           | ☐ Discuss why PDI is important for                               |                                   |
|                   |                    | polymer properties.                                              |                                   |
| Lecture 12:       | Calculation of     | ☐ Principle of osmometry: osmotic                                | Provide an                        |
| Determination of  | molecular mass     | pressure and its relation to Mn                                  | example where                     |
| Molecular Mass    | using the          | ☐ Types of osmometry: membrane and                               | osmometry is                      |
| by Osmometry      | osmotic pressure   | vapor pressure                                                   | used to determine                 |
|                   | equation.          | ☐ Practical applications of osmometry                            | polymer                           |
|                   | 1                  | in polymer science                                               | properties in                     |
|                   |                    |                                                                  | research or                       |
|                   |                    |                                                                  | industry.                         |
| Lecture 13:       | ☐ Concept of       | $\square$ Mark-Houwink equation: $[\eta]$ =                      | Solve viscosity-                  |
| Determination of  | intrinsic          | K(Mw)^a                                                          | related problems                  |
| Molecular Mass    | viscosity and its  | ☐ Applications of viscosity                                      | using real                        |
| by Viscosity      | relation to        | measurements in polymer                                          | polymer data                      |
|                   | molecular mass     | characterization                                                 | from literature.                  |
| Lecture 14:       | ☐ Discuss how      | ☐ Rayleigh scattering: relation to                               | Research on                       |
| Principles of     | light scattering   |                                                                  | dynamic light                     |
| Light Scattering  | helps in           |                                                                  | scattering and its                |
|                   | understanding      | scattering                                                       | importance in                     |
|                   | polymer size and   |                                                                  | polymer science.                  |
|                   | structure.         | scattering.                                                      |                                   |
| Lecture 15:       | ☐ Applications     | ☐ Analyse a research paper that uses                             | Present a case                    |
| Applications of   | of light           |                                                                  | study where light                 |
| Light Scattering  | scattering in      | determination.                                                   | scattering was                    |
|                   | determining        | ☐ Discuss how light scattering                                   | crucial in                        |
|                   | polymer            | techniques are used in biopolymers (e.g.,                        | understanding a                   |
|                   | structure in       | proteins).                                                       | polymer's                         |
|                   | solution           | ☐ Real-world examples of polymer                                 | physical                          |
| LINITE II         |                    | characterization using light scattering                          | properties.                       |
| UNIT II           | Electro Chemi      | stry (Week- 4-6)                                                 |                                   |
| Week 4            |                    | ial, Chemical Potential, and Activity                            | A 04:-::4/                        |
| Lecture           | Objective          | Topics Covered                                                   | Activity/<br>Assignments          |
| Lecture 16:       | Explain the        | Definition of electrode potential                                | Solve example                     |
| Electrode         | derivation of the  | <ul> <li>Standard electrode potential (E<sup>0</sup>)</li> </ul> | problems using the                |
| Potential Basics  | Nernst equation    | 50 1 2 1 1 1 1 1 1 1                                             | Nernst equation to                |
| 1 Otomical Dusies | from the           | Relationship between electrode potential and Gibbs free energy   | calculate electrode               |
|                   | relationship       | potential and Globs free energy $(\Delta G)$ .                   | potential for                     |
|                   | between Gibbs      | (40 <i>)</i> .                                                   | various cell                      |
|                   | free energy and    |                                                                  | reactions.                        |
|                   | electrochemical    |                                                                  |                                   |
|                   | ciccu ociiciiiicai |                                                                  |                                   |
|                   | cells.             |                                                                  |                                   |
| Lecture 17:       |                    | • Nernst equation: E = E <sup>0</sup> –                          | Calculate the electrode potential |

| derivation                                                    | Nernst equation<br>from the<br>relationship<br>between Gibbs<br>free energy and<br>electrochemical<br>cells. |                                                                                                                                                                                                                                                                                                                           | of a given electrochemical cell under non-standard conditions.                                                                                                                                                   |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lecture 18: Electrode Potential and Chemical Potential        | Illustrate the connection between the Nernst equation and chemical potential.                                | <ul> <li>Definition of chemical potential (μ).</li> <li>Connection between electrode potential and chemical potential.</li> <li>Relationship between activity (a) and concentration (C): a=γCa = γCa=γC, where γ is the activity coefficient.</li> <li>Impact of chemical potential on the electrode potential</li> </ul> | Group work on solving electrochemical cell problems involving concentration changes and activities.  Research how chemical potential is used in determining the electrode potential for real-world applications. |
| Lecture 19: Activity and Its Role in Electrode Potential      | Discuss how activity is measured in practical electrochemical systems.                                       | <ul> <li>Definition of activity in electrochemistry</li> <li>Activity vs. concentration and why activity is used in real systems</li> <li>Examples of how activity affects electrochemical reactions</li> </ul>                                                                                                           | Perform calculations comparing electrode potentials using concentration and activity.                                                                                                                            |
| Lecture 20: Deriving the Nernst equation with activity terms. | measured in electrochemical systems.                                                                         | Deriving the Nernst equation with activity terms.                                                                                                                                                                                                                                                                         | Write a short essay explaining the importance of activity in electrochemical cell calculations.                                                                                                                  |
| Week 5                                                        | Debye-Hückel Theory of Conductance                                                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                  |
| Lecture                                                       | Objective                                                                                                    | Topics Covered                                                                                                                                                                                                                                                                                                            | Activity/<br>Assignments                                                                                                                                                                                         |
| Lecture 21: Introduction to the Debye- Hückel Theory          | Solve a set of problems based on the Debye-Hückel Limiting Law for                                           | electrostatic interactions  ☐ Ionic atmosphere and how it affects                                                                                                                                                                                                                                                         | □ Solve problems using the Debye-Hückel Limiting Law to calculate activity coefficients in dilute solutions.                                                                                                     |

|                       | different                  | Limiting Law                                                  | ☐ Explain the              |
|-----------------------|----------------------------|---------------------------------------------------------------|----------------------------|
|                       | electrolyte                | Limiting Law                                                  | physical meaning           |
|                       | concentrations.            |                                                               | of ionic strength (I)      |
|                       | concentrations.            |                                                               | and its importance.        |
| Lecture 22:           | Calculation of             | ☐ Practical applications of the Debye-                        | Group activity:            |
| Application of        | ionic strength             | Hückel theory in determining                                  | Discussion on how          |
| Debye-Hückel          | and activity               | conductance                                                   | the Debye-Hückel           |
| Theory                | coefficients for           | $\Box$ Limiting molar conductivity ( $\Lambda^0$ ) and        | theory is used in          |
|                       | different                  | its relationship with ion concentration                       | analyzing real solutions.  |
|                       | electrolyte                | ☐ Role of the theory in weak                                  | solutions.                 |
|                       | solutions.                 | electrolytes and strong electrolytes                          |                            |
| Lecture 23:           | Discussion on              | ☐ Finite ion size and its impact on the                       | Problem-solving            |
| Modifications of      | how finite ion             | ionic atmosphere                                              | session: Calculate         |
| Debye-Hückel          | size impacts ion           | ☐ Debye-Hückel-Onsager equation and                           | activity                   |
| Limiting Law          | conductance in             | its modifications for concentrated                            | coefficients using         |
|                       | real-world                 | solutions                                                     | modified Debye-            |
|                       | applications.              | ☐ Incorporation of finite-size ions in the                    | Hückel theory.             |
| T 4 24                | 0.1 11                     | theory                                                        |                            |
| Lecture 24:           | Solve problems             | • Interaction between ions and                                | ☐ Group discussion on      |
| Ion-solvent           | involving                  | solvent molecules                                             | discussion on real-world   |
| interactions and      | activity coefficients with | How ion-solvent interactions affect activity coefficients and |                            |
| activity coefficients | solvent effects.           | conductance                                                   | examples where ion-solvent |
| Coefficients          | solvent effects.           | <ul> <li>Concept of solvation and its role</li> </ul>         | interactions are           |
|                       |                            | in electrochemical reactions.                                 | crucial, such as in        |
|                       |                            | in creationical reactions.                                    | biological                 |
|                       |                            |                                                               | systems (e.g., ion         |
|                       |                            |                                                               | transport in cells).       |
| Lecture 25:           | Research the               | Analyze a research paper where the                            | Find an example            |
| Discussion            | limitations of the         | modified Debye-Hückel law is used for                         | of ion-solvent             |
|                       | Debye-Hückel               | concentrated solutions and summarize                          | interaction in a           |
|                       | theory and write           | the findings.                                                 | chemical or                |
|                       | a one-page                 |                                                               | biological process         |
|                       | report on how              |                                                               | and write a short          |
|                       | these limitations          |                                                               | summary on how             |
|                       | are addressed in modern    |                                                               | it affects electrochemical |
|                       | electrochemical            |                                                               | behavior.                  |
|                       | studies.                   |                                                               | ochavioi.                  |
| Week 6                | Butler-Volmer Ed           | quation                                                       |                            |
| Lecture               | Objective                  | Topics Covered                                                | Activity/                  |
|                       | ,                          |                                                               | Assignments                |
| Lecture 26:           | Step-by-step               | ☐ Overview of electrochemical kinetics                        | Revise the class           |
| Introduction to       | derivation of the          | and the need for the Butler-Volmer                            | work                       |
| the Butler-           | equation.                  | equation                                                      |                            |
| Volmer Equation       |                            | ☐ Derivation of the Butler-Volmer                             |                            |
|                       |                            | equation:                                                     |                            |

| Lecture 27:                    | Explanation of               | Explanation of the terms: exchange                                      | Solve a problem                      |
|--------------------------------|------------------------------|-------------------------------------------------------------------------|--------------------------------------|
| Introduction to                | the terms                    | current density (i <sub>0</sub> ), overpotential (η),                   | set based on                         |
| the Butler-                    |                              | charge transfer coefficient (α)                                         | calculating                          |
| Volmer Equation                |                              |                                                                         | current densities in electrochemical |
|                                |                              |                                                                         | reactions using                      |
|                                |                              |                                                                         | the Butler-Volmer                    |
|                                |                              |                                                                         | equation.                            |
| Lecture 28:                    | Understanding                | ☐ Understanding equilibrium                                             | ☐ Solve problems                     |
| Butler-Volmer                  | equilibrium                  | <b>conditions:</b> zero overpotential $(\eta = 0)$                      | related to                           |
| Equation:                      | conditions                   | ☐ Non-equilibrium conditions and their                                  | equilibrium and non-equilibrium      |
| Equilibrium and                |                              | impact on current density                                               | current densities.                   |
| Non-equilibrium<br>Conditions  |                              | ☐ Role of exchange current density in determining reaction rates        | ☐ Discuss the                        |
| Conditions                     |                              | determining reaction rates                                              | significance of                      |
|                                |                              |                                                                         | exchange current density in          |
|                                |                              |                                                                         | electrochemical                      |
|                                |                              |                                                                         | cells.                               |
| Lecture 29:                    | Analyze real-                | ☐ Tafel equation                                                        | Find experimental data from a        |
| Introduction to the Tafel Plot | world electrochemical        | $\Box$ Plotting overpotential ( $\eta$ ) vs. log of current density (i) | data from a research article         |
| the falci Flot                 | systems using                | ☐ Importance of Tafel slope in                                          | related to Tafel                     |
|                                | the Tafel plot.              | understanding electrochemical kinetics                                  | plots and interpret                  |
|                                | Construct a                  | ☐ Relationship between the Tafel                                        | the Tafel slope in the context of    |
|                                | Tafel plot from              | equation and the Butler-Volmer equation                                 | reaction kinetics.                   |
|                                | given data and               |                                                                         |                                      |
|                                | determine the Tafel slope.   |                                                                         |                                      |
| Lecture 30:                    | Exchange                     | ☐ Use of Butler-Volmer equation and                                     | ☐ Use of Butler-                     |
| Applications of                | ·                            | Tafel plots in fuel cells, batteries, and                               | Volmer equation                      |
| the Butler-                    | and Tafel plot               | corrosion studies                                                       | and Tafel plots in                   |
| Volmer Equation                | analysis                     | ☐ Case studies on industrial applications                               | fuel cells,                          |
| and Tafel Plot                 |                              | Limitations of the Butler-Volmer                                        | batteries, and                       |
|                                |                              | model in complex systems                                                | corrosion studies                    |
| UNIT-III                       | Chemical Dynam               | ics                                                                     | I.                                   |
| Week 7                         |                              |                                                                         |                                      |
| Lecture                        | Objective                    | <b>Topics Covered</b>                                                   | Activity/                            |
| T 4 21                         | D : .: .:                    |                                                                         | Assignments                          |
| Lecture 31: Mechanisms and     | Derivation of rate equations | ☐ Definition and examples of opposing (reversible) reactions: A ≠ B     | Write a short essay on how           |
| dynamics of                    |                              | $\Box$ Equilibrium constant (K) and its                                 | opposing                             |
| consecutive and                | reactions.                   | relation to forward and reverse rates                                   | reactions apply to                   |
| opposing                       |                              |                                                                         | reversible                           |
| reactions                      |                              |                                                                         | chemical                             |
|                                |                              |                                                                         | processes in                         |

|                                                                                                                                            |                                                                                                                        |                                                                                                                                                                                                                                                                                           | nature or industry.                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Lecture 32: Mechanisms and dynamics of consecutive and opposing reactions  Lecture 33: Mechanisms and dynamics of consecutive and opposing | Derivation of rate equations for consecutive reactions.  Dynamic equilibrium and time-dependent concentration profiles | <ul> <li>□ Definition and examples of consecutive reactions</li> <li>□ Rate equations for consecutive reactions: A → B → C</li> <li>□ Steady-state approximation for intermediate formation</li> <li>□ Application in multi-step reaction mechanisms (e.g., radioactive decay)</li> </ul> | Work on example problems involving consecutive reaction mechanisms.                |
| reactions  Lecture 34: Introduction to Activated complex theory of unimolecular reactions                                                  | Overview of transition state theory (activated complex theory)                                                         | <ul> <li>Energy profile of a reaction: reactants, transition state (activated complex), and products</li> <li>Unimolecular reactions and their energy barriers</li> <li>Rate constants and reaction rates derived from activated complex theory</li> </ul>                                | Draw potential energy diagrams showing the activated complex and transition state. |
| Lecture 35: Application of Activated Complex Theory to Real Systems                                                                        | Discussion on how activated complex theory is applied in catalysis and enzyme reactions.                               | ☐ Application of activated complex theory to gas-phase unimolecular reactions (e.g., Lindemann mechanism) ☐ Comparison of activated complex theory with collision theory ☐ Role of entropy and enthalpy in determining the rate of unimolecular reactions                                 | Solve problems on rate constants using the Eyring equation.                        |
| Week 8                                                                                                                                     | Photolysis, Photo                                                                                                      | -dimerization, and Auto-oxidation                                                                                                                                                                                                                                                         |                                                                                    |
| Lecture                                                                                                                                    | Objective                                                                                                              | Topics Covered                                                                                                                                                                                                                                                                            | Activity/<br>Assignments                                                           |
| Lecture 36: Mechanism and dynamics of acetaldehyde photolysis                                                                              | Illustrate and explain the photolysis mechanism of acetaldehyde with reaction steps.                                   | <ul> <li>☐ Mechanism of photolysis: absorption of light energy, bond dissociation</li> <li>☐ Example: photolysis of acetaldehyde</li> <li>☐ Energy transfer mechanisms in photochemical reactions</li> </ul>                                                                              | Solve problems on quantum yield in photochemical reactions.                        |
| Lecture 37: Mechanism and dynamics of acetaldehyde photolysis                                                                              | Illustrate and explain the photolysis mechanism of acetaldehyde.                                                       | ☐ Mechanism of photolysis: absorption of light energy, bond dissociation ☐ Energy transfer mechanisms in photochemical reactions                                                                                                                                                          | ☐ Example: photolysis of acetaldehyde                                              |
| Lecture 38:                                                                                                                                | Diagrammatic                                                                                                           | ☐ Mechanism of photo-dimerization:                                                                                                                                                                                                                                                        | ☐ Example:                                                                         |

| Photo-<br>dimerization of<br>anthracene         | representation of photo-dimerization of anthracene.                                       | reaction of two monomers under light exposure                                                                                                                                                                    | photo-<br>dimerization of<br>anthracene                                                                                      |
|-------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Lecture 39: Polymerization reactions            | Explain the photo-polymerisation process using the example of a light -activated polymer. | Polymerization induced by light:<br>chain reactions, radical<br>formation, and propagation.                                                                                                                      | Write a summary on the role of light in polymerization reactions and its industrial applications (e.g., UV curing).          |
| Lecture 40:<br>Auto-oxidation<br>reactions      | Discussion on<br>the role of auto-<br>oxidation in<br>biological<br>systems.              | <ul> <li>☐ Mechanism of auto-oxidation: initiation, propagation, termination</li> <li>☐ Example: auto-oxidation of hydrocarbons</li> <li>☐ Importance in industrial and environmental chemistry</li> </ul>       | Research a real-world example of auto-oxidation (e.g., spoilage of fats) and explain how it occurs.                          |
| Week 9 Lecture                                  | Objective                                                                                 | talysis and Enzyme Kinetics  Topics Covered                                                                                                                                                                      | Activity/                                                                                                                    |
| Lecture                                         | Objective                                                                                 | Topics Covered                                                                                                                                                                                                   | Assignments                                                                                                                  |
| Lecture 41:<br>Homogeneous<br>catalysis         | Diagrammatic representation of catalytic cycles and intermediate formation.               | <ul> <li>□ Definition and mechanism of homogeneous catalysis</li> <li>□ Kinetics of catalytic reactions</li> <li>□ Examples of homogeneous catalysts in industrial processes (e.g., hydroformylation)</li> </ul> | Write a report on an industrial application of homogeneous catalysis and explain how the catalyst affects the reaction rate. |
| Lecture 42: Kinetics of enzyme catalysis        | Michaelis- Menten equation: derivation and significance                                   | Enzyme-substrate complex formation, reaction rates, and rate constants                                                                                                                                           | Solve problems using the Michaelis-Menten equation to determine Vmax and Km.                                                 |
| Lecture 43: Kinetics of enzyme catalysis        | discussion on enzyme inhibitors and their role in controlling biochemical pathways.       | Factors affecting enzyme activity: temperature, pH, inhibitors.                                                                                                                                                  | Research a specific enzyme and explain its catalytic mechanism in a biological context (e.g., DNA polymerase).               |
| Lecture 44:<br>Study of fast<br>reactions using | Overview of flow methods: continuous flow,                                                | <ul> <li>□ Applications in determining the kinetics of fast reactions</li> <li>□ Examples of reactions studied by flow</li> </ul>                                                                                | Summarize the advantages of using flow                                                                                       |

| stopped flow       | methods                                                                                                                                                                                                                                                                               | methods over                                                                                                                                                                                                 |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| stopped now        | nethous                                                                                                                                                                                                                                                                               | conventional                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                       | kinetic studies,                                                                                                                                                                                             |
|                    |                                                                                                                                                                                                                                                                                       | citing a specific                                                                                                                                                                                            |
|                    |                                                                                                                                                                                                                                                                                       | example.                                                                                                                                                                                                     |
| Analyze            | ☐ Temperature-iump (T-iump) and                                                                                                                                                                                                                                                       | Discussion on                                                                                                                                                                                                |
| •                  | 1 0 1 0 17                                                                                                                                                                                                                                                                            | how T-jump and                                                                                                                                                                                               |
|                    |                                                                                                                                                                                                                                                                                       | P-jump methods                                                                                                                                                                                               |
|                    |                                                                                                                                                                                                                                                                                       | are applied in                                                                                                                                                                                               |
|                    | *                                                                                                                                                                                                                                                                                     | studying                                                                                                                                                                                                     |
|                    | •                                                                                                                                                                                                                                                                                     | biological                                                                                                                                                                                                   |
|                    | oute removed und inguita emaining                                                                                                                                                                                                                                                     | systems.                                                                                                                                                                                                     |
| Chemical Ther      | modynamics (Week: 10-11)                                                                                                                                                                                                                                                              | systems.                                                                                                                                                                                                     |
|                    | •                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                              |
|                    |                                                                                                                                                                                                                                                                                       | Activity/                                                                                                                                                                                                    |
| o bjective         | Topies Covered                                                                                                                                                                                                                                                                        | Assignments                                                                                                                                                                                                  |
| Derivation: Total  | ☐ Definition and significance of partial                                                                                                                                                                                                                                              | Example                                                                                                                                                                                                      |
| property of a      | molar properties (e.g., partial molar                                                                                                                                                                                                                                                 | problem:                                                                                                                                                                                                     |
| mixture            |                                                                                                                                                                                                                                                                                       | Calculation of                                                                                                                                                                                               |
|                    | ☐ Chemical potential as a partial molar                                                                                                                                                                                                                                               | partial molar                                                                                                                                                                                                |
|                    | Gibbs free energy                                                                                                                                                                                                                                                                     | volume for an                                                                                                                                                                                                |
|                    |                                                                                                                                                                                                                                                                                       | ideal binary                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                       | mixture.                                                                                                                                                                                                     |
| Application of     | ☐ Introduction to chemical potential (μ)                                                                                                                                                                                                                                              | Calculate the                                                                                                                                                                                                |
| chemical           | ☐ Relationship between chemical                                                                                                                                                                                                                                                       | variation of                                                                                                                                                                                                 |
| potential in ideal | potential and Gibbs free energy                                                                                                                                                                                                                                                       | chemical potential                                                                                                                                                                                           |
| and real           |                                                                                                                                                                                                                                                                                       | with temperature                                                                                                                                                                                             |
| mixtures           |                                                                                                                                                                                                                                                                                       | and pressure for a                                                                                                                                                                                           |
|                    |                                                                                                                                                                                                                                                                                       | given system.                                                                                                                                                                                                |
|                    | ☐ Variation of chemical potential with                                                                                                                                                                                                                                                | Practice the class                                                                                                                                                                                           |
|                    | temperature and pressure using Gibbs-                                                                                                                                                                                                                                                 | work                                                                                                                                                                                                         |
|                    | Duhem equation                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                              |
|                    |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                              |
|                    |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                              |
| Derive the         | ☐ Definition of fugacity and its                                                                                                                                                                                                                                                      | Solve problems to                                                                                                                                                                                            |
| fugacity           | relationship to pressure and chemical                                                                                                                                                                                                                                                 | calculate fugacity                                                                                                                                                                                           |
| equation for real  | potential                                                                                                                                                                                                                                                                             | for a gas using                                                                                                                                                                                              |
| gases using the    | ☐ Fugacity of real gases and comparison                                                                                                                                                                                                                                               | fugacity                                                                                                                                                                                                     |
| chemical           | to ideal gas behaviour                                                                                                                                                                                                                                                                | coefficients. Find the fugacity of                                                                                                                                                                           |
| potential.         | ☐ Introduction to the fugacity                                                                                                                                                                                                                                                        | nitrogen gas at high                                                                                                                                                                                         |
| Discuss phase      | coefficient (\phi)                                                                                                                                                                                                                                                                    | pressure using data                                                                                                                                                                                          |
| transitions using  | ☐ Dependence of fugacity on                                                                                                                                                                                                                                                           | provided.                                                                                                                                                                                                    |
| fugacity and       | temperature and pressure                                                                                                                                                                                                                                                              | Use the                                                                                                                                                                                                      |
| how it helps       | ☐ The Clapeyron equation and its role                                                                                                                                                                                                                                                 | Clapeyron                                                                                                                                                                                                    |
| predict phase      | in phase equilibrium                                                                                                                                                                                                                                                                  | equation to                                                                                                                                                                                                  |
| changes.           | ☐ Fugacity in phase transitions (solid-                                                                                                                                                                                                                                               | calculate the                                                                                                                                                                                                |
|                    | Partial Molar Pro Objective  Derivation: Total property of a mixture  Application of chemical potential in ideal and real mixtures  Derive the fugacity equation for real gases using the chemical potential. Discuss phase transitions using fugacity and how it helps predict phase | Analyze relaxation data and calculate rate constants for fast reactions.    Chemical Thermodynamics (Week: 10-11)     Partial Molar Properties in Ideal Mixtures and fugacity     Objective   Topics Covered |

| Lecture 50:<br>Fugacity in Gas<br>Mixtures                               | Derivation of fugacity expressions for a component in a gas mixture.                                                 | liquid-gas)  Calculation of fugacity using thermodynamic data  Fugacity in gas mixtures and its determination from partial pressures  Ideal vs. non-ideal gas mixtures:  How fugacity coefficients are used in non-ideal gas mixtures                                  | fugacity of a substance during a phase change (e.g., vaporization).  Calculate the fugacity of each component in a gas mixture at a given temperature and pressure. |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Week 11                                                                  | •                                                                                                                    | em-Margules Equation                                                                                                                                                                                                                                                   |                                                                                                                                                                     |
| Lecture                                                                  | Objective                                                                                                            | <b>Topics Covered</b>                                                                                                                                                                                                                                                  | Activity/<br>Assignments                                                                                                                                            |
| Lecture 51: Introduction to Activity and Activity Coefficients           | Discussion on<br>the physical<br>meaning of<br>activity and its<br>importance in<br>chemical<br>reactions.           | <ul> <li>□ Definition of activity and activity coefficient (γ)</li> <li>□ Relation between activity, concentration, and pressure:</li> <li>□ Activity in ideal vs. real solutions</li> </ul>                                                                           | Solve example problems calculating activity and activity coefficients.                                                                                              |
| Lecture 52: Activity Variation with Temperature and Pressure             | Derive the temperature and pressure dependence of activity from thermodynamic principles.                            | <ul> <li>□ Dependence of activity on temperature and pressure</li> <li>□ Derivation of the temperature and pressure dependence of activity coefficients</li> <li>□ Application of activity in phase equilibria</li> </ul>                                              | Problem-solving session: Calculate activity for a real solution as temperature changes.                                                                             |
| Lecture 53: The Duhem-Margules Equation and Its Application  Lecture 54: | Apply the Duhem- Margules equation to calculate the activity coefficients for a binary liquid mixture  Prediction of | ☐ Introduction to the Duhem-Margules equation. ☐ Importance of the Duhem-Margules equation in describing non-ideal solutions ☐ Application of the Duhem-Margules equation in predicting activity coefficients in binary mixtures  Practical applications of the Duhem- | Solve problems on calculating activity coefficients using the Duhem- Margules equation.  Case study: Use                                                            |
| Application of Duhem- Margules Equation in Real Systems  Lecture 55:     |                                                                                                                      | Margules equation in industrial processes  Review of partial molar properties and                                                                                                                                                                                      | the Duhem-Margules equation to design a distillation column for a binary mixture.  Prepare a quiz on                                                                |
| Review and                                                               | discussion and                                                                                                       | fugacity                                                                                                                                                                                                                                                               | partial molar                                                                                                                                                       |

| Advanced                      | Q&A session on                           | Review of activity and Duhem-Margules              | properties,        |  |
|-------------------------------|------------------------------------------|----------------------------------------------------|--------------------|--|
| Problem-Solving               | challenging                              | equation                                           | fugacity, and the  |  |
| Treeten serving               | concepts.                                | equation                                           | J-equation.        |  |
| Unit V                        | Statistical Thermodynamics (Week- 12-14) |                                                    |                    |  |
| Week 12                       |                                          | Introduction and Fundamental Concepts              |                    |  |
| Lecture                       | Objective Topics Covered Activity/       |                                                    |                    |  |
| Lecture                       | Objective                                | Topics Covered                                     | Assignments        |  |
| Lecture 56:                   | Definitions:                             | ☐ Overview of Statistical                          | Read about the     |  |
| Introduction to               | Thermodynamic                            | Thermodynamics and its significance in             | different types of |  |
| Statistical                   | probability and                          | macroscopic and microscopic systems.               | ensembles and      |  |
| Thermodynamics                | relation to                              | ☐ Introduction to states, phase space,             | provide real-life  |  |
|                               | macroscopic                              | and the concept of a microstate and                | examples of each.  |  |
|                               | observables.                             | macrostate.                                        |                    |  |
|                               | quantities.                              |                                                    |                    |  |
| Lecture 57:                   | _                                        | ☐ Microcanonical Ensemble: Fixed                   | Calculate the      |  |
| Ensembles in                  |                                          | energy, volume, and particle number (E,            | number of          |  |
| Statistical                   |                                          | (V, N)                                             | microstates for an |  |
| Mechanics                     |                                          | ☐ Definition of thermodynamic                      | isolated system    |  |
|                               |                                          | probability for isolated systems                   |                    |  |
| Lecture 58:                   | Derivation of the                        | ☐ Canonical <b>Ensemble</b> : Fixed                | Apply the          |  |
| Boltzmann                     | Boltzmann                                | temperature, volume, and particle                  | Boltzmann          |  |
| Distribution                  | distribution from                        | number (T, V, N)                                   | Distribution Law   |  |
| Law, Canonical                | the canonical                            | ☐ Probability distribution of energy               | to a system of     |  |
| Ensemble and                  | ensemble.                                | levels using the Boltzmann                         | particles.         |  |
| the Concept of                |                                          | Distribution Law                                   |                    |  |
| Temperature                   |                                          | ☐ Derivation of the canonical partition            |                    |  |
|                               |                                          | function.                                          |                    |  |
| Lecture 59:                   | Derivation of the                        | ☐ Grand Canonical Ensemble: Fixed                  | Discuss real-life  |  |
| Grand Canonical               | grand canonical                          | temperature, volume, and chemical                  | systems described  |  |
| Ensemble and                  | partition                                | potential (T, V, μ)                                | by the grand       |  |
| Chemical                      | function.                                | ☐ Introduction to chemical potential and           | canonical          |  |
| Potential                     | A 1 .1                                   | its role in open systems.                          | ensemble.          |  |
| Lecture 60:                   | Apply the                                | <u> </u>                                           | calculate          |  |
| Thermodynamic Probability and | Boltzmann-                               | thermodynamic probability and how it               | probabilities for  |  |
| Probability and               | Planck equation                          | governs system behavior.                           | different energy   |  |
| Boltzmann                     | to calculate                             | Boltzmann-Planck Equation:                         | levels.            |  |
| Planck Equation               | entropy in a                             | Relationship between entropy and                   |                    |  |
|                               | simple system (e.g., ideal gas).         | probability.                                       |                    |  |
|                               | (c.g., ideal gas).                       | ☐ Entropy maximization and equilibrium conditions. |                    |  |
| Week 13                       | Partition Function                       | on and Its Significance                            |                    |  |
| Lecture                       |                                          |                                                    | Activity/          |  |
|                               |                                          | - r                                                | Assignments        |  |
| Lecture 61:                   | How                                      | ☐ Definition and significance of the               | Derive the         |  |
| Partition                     | thermodynamic                            | Partition Function (Z).                            | expression for     |  |
| Function and                  | properties are                           | ☐ Derivations: Internal Energy,                    | Helmholtz Free     |  |

| Thermodynamic Quantities | derived from the partition function. | Helmholtz Free Energy, Entropy.                                             | Energy using the partition function.  |
|--------------------------|--------------------------------------|-----------------------------------------------------------------------------|---------------------------------------|
| Lecture 61:              | Deriving the                         | ☐ Partition function for monatomic                                          | Derive internal                       |
| Translational            | Translational                        | ideal gases.                                                                | energy and                            |
| Partition                | Partition                            | ☐ Connection to thermodynamic                                               | pressure for an                       |
| Function                 | Function.                            | quantities like pressure and internal                                       | ideal gas using                       |
|                          |                                      | energy.                                                                     | the translational partition function. |
| Lecture 63:              | Rotational                           | • Quantum mechanical treatment                                              | Calculate the                         |
| Rotational               | Partition                            | of rotational motion.                                                       | rotational                            |
| Partition                | <b>Function</b> for                  | • Low-temperature vs high-                                                  | partition function                    |
| Function                 | diatomic                             | temperature behavior of                                                     | for a diatomic                        |
|                          | molecules.                           | rotational states.                                                          | molecule (e.g.,                       |
|                          |                                      |                                                                             | H <sub>2</sub> ).                     |
| Lecture 64:              | Vibrational                          | ☐ Harmonic oscillator model for                                             | Derive the                            |
| Vibrational              | Partition                            | vibrational motion.                                                         | vibrational energy                    |
| Partition                | <b>Function</b> for                  | ☐ Vibrational contribution to                                               | for a diatomic                        |
| Function                 | diatomic                             | thermodynamic quantities.                                                   | molecule at room                      |
|                          | molecules.                           |                                                                             | temperature.                          |
| Lecture 65:              | Electronic                           | <b>Electronic Partition Function:</b>                                       | Combine the                           |
| Electronic               | Partition                            | Contribution of electronic energy levels                                    | different types of                    |
| Partition                | <b>Function</b> for                  | to the total partition function.                                            | partition functions                   |
| Function and             | diatomic                             | Combining translational, rotational,                                        | to derive the total                   |
| Overall Partition        | molecules.                           | vibrational, and electronic partition                                       | partition function                    |
| Function                 |                                      | functions to describe a complete system.                                    | for a diatomic                        |
|                          |                                      |                                                                             | molecule.                             |
| Week 14                  |                                      | tatistical Thermodynamics                                                   |                                       |
| Lecture                  | Objective                            | <b>Topics Covered</b>                                                       | Activity/                             |
| I andrews (()            | A 1                                  | Daniaria - 41 1i                                                            | Assignments Calculate the heat        |
| Lecture 66:              | Applying partition                   | Deriving thermodynamic quantities from the partition function: Free energy, | capacity of a                         |
| Thermodynamic            |                                      |                                                                             | system using its                      |
| Functions from Partition |                                      | entropy, and heat capacity.                                                 | partition function.                   |
| Function                 | predict phase transitions.           |                                                                             | 1                                     |
| Lecture 67:              | Derivation of the                    | ☐ Applications of the Sakur-Tetrode                                         | Use the Sakur-                        |
| Sakur-Tetrode            | Sakur-Tetrode                        | equation to calculate entropy.                                              | Tetrode equation to                   |
| Equation and             | Equation for                         | ☐ Discussion on how the equation can                                        | calculate the                         |
| Applications and         | monatomic                            | be used to understand real gas                                              | entropy of a noble                    |
| 1 ppiloutions            | gases.                               | behaviour.                                                                  | gas.                                  |
| Lecture 68:              | <u> </u>                             | ☐ Case study: Application of statistical                                    | Calculate the                         |
| Application of           |                                      | thermodynamics to monatomic and                                             | partition function                    |
| partition                |                                      | diatomic molecules.                                                         | and use it to                         |
| functions in             |                                      | ☐ Calculation of thermodynamic                                              | determine the                         |
| monatomic and            |                                      | properties of simple gases (e.g., Helium,                                   | thermodynamic                         |
| diatomic                 |                                      | Oxygen).                                                                    | properties of an                      |
|                          |                                      |                                                                             | ideal gas.                            |

| molecules                                                                |                                                                                                     |                                                                                                                                                         |                                                                                                  |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Lecture 69:<br>Statistical<br>Approach to<br>Thermodynamic<br>Properties | Relationship<br>between<br>partition<br>functions and<br>measurable<br>thermodynamic<br>quantities. | ☐ Entropy, energy, and specific heat capacity derived statistically. ☐ Real-world applications in predicting gas behavior at high and low temperatures. | Compare classical and statistical approaches to calculating heat capacities of gases.            |
| Lecture 70: Advanced Applications and Review                             | Advanced applications of statistical thermodynamics in real-world systems.                          | Distribution, and thermodynamic properties.                                                                                                             | Use of statistical mechanics in predicting chemical reaction rates, phase transitions, and more. |
| Week 15                                                                  | Review and Exan                                                                                     |                                                                                                                                                         |                                                                                                  |
| Lecture                                                                  | Objective                                                                                           | <b>Topics Covered</b>                                                                                                                                   | Activity/<br>Assignments                                                                         |
| Lecture 71:                                                              | Review key concepts, problem-solving sessions                                                       | Practice exam questions, discuss answers and clarify doubts                                                                                             |                                                                                                  |
| Lecture 72:                                                              | Review key concepts, problem-solving sessions                                                       | Practice exam questions, discuss answers and clarify doubts                                                                                             |                                                                                                  |
| Lecture 73:                                                              | Review key concepts, problem-solving sessions                                                       | Practice exam questions, discuss answers and clarify doubts                                                                                             |                                                                                                  |
| Lecture 74:                                                              | Review key concepts, problem-solving sessions                                                       | Practice exam questions, discuss answers and clarify doubts                                                                                             |                                                                                                  |
| Lecture 75:                                                              | Review key concepts, problem-solving sessions                                                       | Practice exam questions, discuss answers and clarify doubts                                                                                             |                                                                                                  |
| Assessment                                                               |                                                                                                     |                                                                                                                                                         |                                                                                                  |

| Lesson Plan for Core Course - III: Organic Chemistry     |                                 |                                             |                                      |  |  |
|----------------------------------------------------------|---------------------------------|---------------------------------------------|--------------------------------------|--|--|
| CC -III                                                  | Organic Chemistry               | Credits: 5                                  | Full Marks: 70                       |  |  |
|                                                          | Teacher:                        |                                             |                                      |  |  |
| Unit I Nature of Bonding in Organic Molecules (Week 1-2) |                                 |                                             |                                      |  |  |
| Week 1                                                   |                                 | ,                                           |                                      |  |  |
| Lecture /Topic                                           | Objective                       | <b>Topics Covered:</b>                      | Activity/                            |  |  |
|                                                          | T                               |                                             | Assignments                          |  |  |
| Lecture 1:                                               | Introduction to                 | ☐ Conjugation: Definition,                  | Draw resonance                       |  |  |
| Introduction to                                          | delocalized bonding:            | types (linear, cross                        | structures of                        |  |  |
| Delocalized                                              | Conjugation and                 | conjugation).                               | simple molecules                     |  |  |
| Chemical                                                 | resonance.   Stability of       | ☐ Resonance: Resonance                      | (e.g., phenol, aniline) and          |  |  |
| Bonding                                                  | ☐ Stability of molecules due to | structures, resonance hybrid, and resonance | aniline) and identify the most       |  |  |
|                                                          | resonance.                      | energy.                                     | stable structure.                    |  |  |
| Lecture 2:                                               | □ Drawing                       | Hyperconjugation:                           | Explain                              |  |  |
| Hyperconjugation                                         | hyperconjugation in             | Concept and examples                        | hyperconjugation                     |  |  |
| and Tautomerism                                          | alkenes and stability           | Effects of hyperconjugation                 | in isopropyl                         |  |  |
|                                                          | order of alkenes.               | on stability, bond lengths,                 | benzene.                             |  |  |
|                                                          | ☐ Mechanisms of                 | and acidity.                                | ☐ Compare keto                       |  |  |
|                                                          | tautomeric                      | Tautomerism: Keto-enol                      | and enol forms for                   |  |  |
|                                                          | interconversion.                | tautomerism, amide-imidic                   | acetone.                             |  |  |
|                                                          |                                 | acid tautomerism.                           |                                      |  |  |
| Lecture 3:                                               | Introduction to                 | ☐ Criteria for aromaticity                  | Apply Hückel's                       |  |  |
| Aromaticity in                                           | aromaticity and the             | (Hückel's Rule): $4n+2\pi$                  | rule to benzene,                     |  |  |
| Benzenoid                                                | concept of cyclic               | electron rule.                              | naphthalene, and                     |  |  |
| Compounds                                                | delocalization.                 | ☐ Benzenoid Compounds:                      | anthracene.                          |  |  |
|                                                          |                                 | Properties of benzene and                   | Identify whether                     |  |  |
|                                                          |                                 | other aromatic compounds                    | compounds like                       |  |  |
|                                                          |                                 | (e.g., naphthalene,                         | pyridine and furan                   |  |  |
|                                                          |                                 | anthracene).                                | are aromatic based on Hückel's rule. |  |  |
| Lecture 4:                                               | Explanation of                  | Non-Benzenoid                               | Draw the structure                   |  |  |
| Aromaticity in                                           |                                 | Compounds: Definition                       | of azulene and                       |  |  |
| Non-Benzenoid                                            | benzenoid compounds.            | and examples (e.g., azulene,                | explain why it's                     |  |  |
| Compounds                                                | Discussion of alternant         | tropylium ion).                             | aromatic.                            |  |  |
| 1                                                        | and non-alternant               | Drawing structures of non-                  |                                      |  |  |
|                                                          | hydrocarbons.                   | benzenoid aromatic systems                  |                                      |  |  |
|                                                          |                                 | and discussing their                        |                                      |  |  |
|                                                          |                                 | aromaticity.                                |                                      |  |  |
| Lecture 5:                                               | Deep dive into                  | Anti-Aromaticity:                           | Explain why                          |  |  |
| Huckel's Rule and                                        | Hückel's Rule for               | Definition, examples, and                   | cyclooctatetraene                    |  |  |
| Anti-Aromaticity                                         | determining                     | characteristics (e.g.,                      | is not aromatic but                  |  |  |
|                                                          | aromaticity.                    | cyclobutadiene,                             | adopts a tub-                        |  |  |
|                                                          | Anti-aromatic systems           | cyclooctatetraene).                         | shaped                               |  |  |
|                                                          | follow 4n $\pi$ -electron       | Energy levels of molecular                  | conformation to                      |  |  |
|                                                          | rule.                           | orbitals in anti-aromatic                   | avoid anti-                          |  |  |

|                              |                                            | systems.                        | aromaticity.                     |
|------------------------------|--------------------------------------------|---------------------------------|----------------------------------|
| Week 2                       |                                            |                                 |                                  |
| Lecture /Topic               | Objective                                  | <b>Topics Covered:</b>          | Activity/                        |
|                              |                                            |                                 | Assignments                      |
| Lecture 6:                   | Discussion on                              | Definition and properties of    | Analyze the                      |
| Annulenes and                | aromaticity in larger                      | Annulenes (e.g., [10]-          | structure of [14]-               |
| Aromaticity in               | conjugated cyclic                          | annulene, [18]-annulene).       | annulene and                     |
| Larger Systems               | systems.                                   | Stability and aromaticity of    | discuss its                      |
|                              |                                            | annulenes.                      | aromaticity or anti-             |
| Lecture 7:                   | Digayag maal ayammlag                      | ☐ Introduction to <b>Homo</b> - | aromaticity.  Provide a detailed |
| Homo-                        | Discuss real examples of homo-aromatic     | Aromaticity: What makes         | structure of a                   |
| Aromaticity and              | systems (e.g.,                             | a compound homo-                | homo-aromatic                    |
| Aromatic                     | cyclopropyl cation).                       | aromatic.                       | molecule and                     |
| Stabilization                | e j dioprop j i danon).                    | ☐ Stability comparison          | explain its stability.           |
|                              |                                            | between aromatic, anti-         | J J                              |
|                              |                                            | aromatic, and homo-             |                                  |
|                              |                                            | aromatic systems.               |                                  |
| Lecture 8:                   | Problem-solving                            | Perturbation Molecular          | Use PMO theory to                |
| PMO Approach to              | session applying PMO                       | Orbital (PMO) Theory:           | explain the                      |
| Aromaticity                  | theory to various                          | Basics and how it differs       | aromaticity of                   |
|                              | conjugated systems.                        | from traditional approaches.    | benzene.                         |
|                              |                                            | Application of PMO theory       |                                  |
| T                            | D : 1 1                                    | to explain aromaticity.         | D (1                             |
| Lecture 9: Molecular Orbital | Drawing molecular                          | ☐ Molecular orbital theory      | Draw the                         |
| (MO) Theory and              | orbital diagrams for benzene and analyzing | applied to conjugated systems.  | molecular orbital diagram of     |
| Aromaticity                  | its aromatic stability.                    | □ Energy levels of              | •                                |
| 7 Homationy                  | its dromatic stability.                    | molecular orbitals in           | cation and explain               |
|                              |                                            | aromatic, anti-aromatic, and    | its aromaticity.                 |
|                              |                                            | non-aromatic compounds.         | ,                                |
| Lecture 10:                  | Review of key concepts                     |                                 | Prepare for a quiz               |
| Review and                   |                                            | problems related to             | on the key                       |
| Problem-Solving              | Delocalized bonding,                       | aromaticity in both             | concepts of                      |
| Session                      | aromaticity, resonance,                    | benzenoid and non-              | aromaticity and                  |
|                              | hyperconjugation.                          | benzenoid compounds.            | bonding.                         |
|                              |                                            | ☐ Discussion on exceptions      |                                  |
| Unit II:                     | Stereochemistry (Week                      | to Hückel's Rule.               |                                  |
| Week -3                      | Introduction to Stereoc                    |                                 |                                  |
| Lecture                      | Objective Stereoe                          | Topics Covered:                 | Activity/                        |
|                              | <u> </u>                                   | •                               | Assignments                      |
| Lecture 11:                  | Identifying chiral                         | ☐ Chirality: Definition,        | Identify chiral                  |
| Introduction to              | molecules and                              | importance in chemistry,        | centers and                      |
| Stereochemistry              | symmetry elements in                       | examples.                       | symmetry elements in 2-butanol,  |
| and Chirality                | given examples.                            | ☐ Elements of Symmetry:         | methane, and ethane.             |
|                              | ļ.                                         |                                 | and condito.                     |

|                                                                   |                                                                                                     | Plane of symmetry, center                                                                                                                               |                                                                               |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|                                                                   |                                                                                                     | of symmetry, improper                                                                                                                                   |                                                                               |
| Lecture 12: Molecules with More Than One Chiral Center            | Drawing diastereomers of tartaric acid, meso compounds.                                             | axes.  ☐ Molecules with multiple chiral centers.  ☐ Diastereomers vs.  Enantiomers.  ☐ Examples: Tartaric acid,                                         | Identify the number of stereoisomers in 2,3-dibromobutane and 2,3-butanediol. |
|                                                                   |                                                                                                     | glucose, and more.                                                                                                                                      | and 2,5 outainedion                                                           |
| Lecture 13: Determination of Relative and Absolute Configuration  | Assigning configurations to stereocenters.  Practice problems assigning R/S configurations.         | <ul> <li>□ Relative Configuration</li> <li>(D/L system).</li> <li>□ Absolute Configuration:</li> <li>R/S notation, Cahn-Ingold-Prelog rules.</li> </ul> | Assign the configuration to stereocenters in lactic acid and 2-bromobutane.   |
| Lecture 14: Methods of Resolution of Racemic Mixtures             | Calculation of optical purity and EE in example problems.                                           | <ul> <li>Resolution:     Techniques for separating enantiomers.</li> <li>Chemical resolution, enzymatic methods, kinetic resolution.</li> </ul>         | Calculate the optical purity for a mixture of 70% R and 30% S enantiomers.    |
| Lecture 15: Methods of Resolution of Racemic Mixtures             |                                                                                                     | Optical Purity and Enantiomeric Excess (EE).                                                                                                            |                                                                               |
| Week 4                                                            | Asymmetric Synthesis a                                                                              |                                                                                                                                                         | A - 4° ° 4 /                                                                  |
| Lecture 16: Prochirality, Enantiotopic, and Diastereotopic Groups | Objective  Identify prochiral centers and enantiotopic faces in molecules like ethanol and acetone. | and examples.  ☐ Enantiotropic and                                                                                                                      | Activity/ Assignments  Identify enantiotopic hydrogens in propanol.           |
| Lecture 17: Asymmetric Synthesis and Its Importance               | Asymmetric Synthesis: Definition, importance in producing enantiomerically pure compounds.          | Discuss examples of important industrial asymmetric synthesis reactions.  Key reactions: Sharpless epoxidation, asymmetric hydrogenation.               | Research an industrial process involving asymmetric synthesis.                |
| Lecture 18: Conformational Analysis of                            | Draw chair conformations and predict the most stable                                                | • Conformational  Analysis: Chair and boat forms of                                                                                                     | Predict the stability of methylcyclohexane                                    |

| Cycloalkanes<br>(Six-Membered<br>Rings)                      | conformer.                                                                                           | cyclohexane.  • Axial vs. Equatorial positions, stability of different conformers.                                                         | conformers and explain why.                                                                              |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Lecture 19: Conformational Analysis of Decalins              | Describe the impact of conformation on the reactivity of cis- and trans-decalin.                     | ☐ Conformation of <b>Decalins</b> : Cis and transdecalin, their properties. ☐ Effect of conformation on reactivity and stability.          | Draw and compare<br>the conformations<br>of cis- and trans-<br>decalin.                                  |
| Lecture 20: Effect of Conformation on Reactivity             | Analyze how conformation impacts reactivity in the substitution reactions of cyclohexyl derivatives. | <ul> <li>☐ How molecular conformation impacts chemical reactivity.</li> <li>☐ Examples: Substitution and elimination reactions.</li> </ul> | Predict the reactivity of substituted cyclohexanes in an elimination reaction.                           |
| Week 5 Lecture                                               | Objective                                                                                            | Topics Covered                                                                                                                             | Activity/                                                                                                |
| Lecture                                                      | Objective                                                                                            | -                                                                                                                                          | Assignments                                                                                              |
| Lecture 21: Optical Activity in the Absence of Chiral Carbon | Identifying optically active biphenyls and allenes and Conditions for chirality in these systems.    | Optical Activity in molecules without a chiral center: Biphenyls, Allenes, and Spiranes.                                                   | Draw the structure of<br>an optically active<br>allene and explain its<br>chirality.                     |
| Lecture 22:<br>Chirality Due to<br>Helical Shape             | Explore the stereochemistry of helical molecules and predict their optical activity.                 | Chirality in Helical Molecules: Introduction and examples (e.g., helicenes).                                                               | Draw the structure of helicene and explain why it exhibits chirality.                                    |
| Lecture 23:<br>Stereospecific<br>Reactions                   | Discussion on examples of stereospecific reactions (e.g., catalytic hydrogenation, E2 elimination).  | Stereospecific Reactions: Mechanism and examples.  Impact of stereochemistry on reactivity and selectivity in organic reactions.           | Identify a stereospecific reaction and explain the stereochemical outcome.                               |
| Lecture 24:<br>Stereoselective<br>Reactions                  | Discussion on examples of stereoselective reactions (e.g., catalytic hydrogenation, E2 elimination). | Stereoselective Reactions: Mechanism and examples.  Difference between stereospecific and stereoselective reactions.                       | Predict the stereochemical outcome of a nucleophilic substitution reaction involving a chiral substrate. |
| Lecture 25: Advanced Topics in Stereochemistry               | How stereochemistry affects drug design and function in pharmaceutical chemistry.                    | Case studies in advanced stereochemistry.                                                                                                  | Research and summarize the stereochemistry of a drug like thalidomide or                                 |

|                                                        |                                                                                                                 |                                                                                                                                                                                           | ibuprofen.                                                                                     |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Unit III                                               | Reaction Mechanism: S                                                                                           | tructure and Reactivity (Wee                                                                                                                                                              | ek 6-8)                                                                                        |
| Week 6                                                 | Introduction to Reaction Mechanisms                                                                             |                                                                                                                                                                                           |                                                                                                |
| Lecture                                                | Objective                                                                                                       | Topics Covered                                                                                                                                                                            | Activity/<br>Assignments                                                                       |
| Lecture 26: Types of Reactions:                        | Overview of Types of Reactions: Difference between Kinetic and Thermodynamic Control.                           | of Types of Reactions: Substitution, elimination, addition, rearrangement, and redox. Examples of kinetic and thermodynamic products (e.g., enol-keto tautomerism).                       | Research an example of a thermodynamically favored reaction and a kinetically favored one.     |
| Lecture 27: Hammond's Postulate and Transition States  | Drawing and interpreting energy diagrams for exergonic and endergonic reactions.                                | ☐ Hammond's Postulate: Understanding the correlation between transition state and reactants/products. ☐ Potential Energy Diagrams: Reactants, products, transition states, intermediates. | Create potential energy diagrams for the SN1 and SN2 reactions.                                |
| Lecture 28:<br>Curtin-Hammett<br>Principle             | Analyze a reaction where the Curtin-Hammett principle applies.                                                  | Introduction to the Curtin-Hammett Principle: Understanding when two intermediates lead to different products.  Examples where the principle applies (e.g., conformational equilibria).   | Apply the Curtin-Hammett principle to predict product distribution in a given reaction.        |
| Lecture 29: Transition States and Intermediates        | Difference between Transition States and Intermediates.                                                         | Methods to identify and study intermediates (e.g., spectroscopy, trapping).                                                                                                               | Identify transition states and intermediates in the electrophilic addition reaction of alkene. |
| Lecture 30: Methods of Determining Reaction Mechanisms | Analyze a mechanism using kinetic data.  Reaction kinetics as a tool to determine reaction order and rate laws. | Experimental methods to elucidate mechanisms:  Kinetic studies, Isolation of intermediates,  Spectroscopy.                                                                                | Outline steps to determine the mechanism of a reaction using kinetic studies.                  |
| Week 7 Lecture                                         | Objective                                                                                                       | <b>Topics Covered</b>                                                                                                                                                                     | Activity/                                                                                      |
| Lecture                                                | Objective                                                                                                       | Topics Covered                                                                                                                                                                            | Assignments                                                                                    |
| Lecture 31:                                            | Identify isotope effects                                                                                        | ☐ Introduction to Isotope                                                                                                                                                                 | Case study: Isotope                                                                            |

| Isotope Effects in              | in a simple organic                        | Effects: Primary and                                 | effects in                    |
|---------------------------------|--------------------------------------------|------------------------------------------------------|-------------------------------|
| Mechanisms                      | reaction and explain                       | secondary isotope effects.                           | substitution                  |
|                                 | their significance.                        | ☐ Application of isotope                             | reactions.                    |
|                                 |                                            | effects in reaction mechanism studies (e.g.,         |                               |
|                                 |                                            | D/H exchange).                                       |                               |
| Lecture 32:                     | Discuss how structure                      | $\Box$ Generation of                                 | Draw the structures           |
| Generation,                     | influences the stability                   | Carbocations: Common                                 | of several                    |
| Structure, stability            | and reactivity of                          | methods (e.g., heterolysis).                         | carbocations and              |
| and reactivity of               | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \      | ☐ Structure and stability of                         | predict their                 |
| Carbocations                    | methyl vs. tertiary).                      | carbocations:                                        | relative stabilities.         |
|                                 |                                            | Hyperconjugation, inductive effects                  |                               |
| Lecture 33:                     | Compare the stability                      | • Formation and                                      | Predict the stability         |
| Generation,                     | of carbanions in                           | structure of                                         | of carbanions in              |
| Structure, stability            | different molecules                        | Carbanions.                                          | substituted alkenes           |
| and reactivity of               | (e.g., acetylide anion                     | • Factors affecting                                  | and alkynes.                  |
| Carbanions                      | vs. methyl anion).                         | carbanion stability:                                 |                               |
|                                 |                                            | Inductive and                                        |                               |
| I                               | C                                          | resonance effects.                                   | D                             |
| Lecture 34: Free Radicals:      | Case study: Free radical halogenation of   | Free Radicals: Generation, structure, and stability. | Draw the mechanism of free    |
| Structure and                   | alkanes.                                   | Reactions involving free                             | radical chlorination          |
| Reactivity                      | urkures.                                   | radicals: Addition,                                  | of methane.                   |
|                                 |                                            | substitution.                                        |                               |
| Lecture 35:                     |                                            | ☐ Introduction to                                    | Explain the                   |
| Carbenes and                    |                                            | Carbenes: Generation,                                | differences in                |
| Nitrenes                        |                                            | structure, singlet and triplet carbenes.             | reactivity between            |
|                                 |                                            | □ Nitrenes: Formation and                            | singlet and triplet carbenes. |
|                                 |                                            | reactivity.                                          | caroches.                     |
| Week 8                          | Effect of Structure on R                   | -                                                    |                               |
| Lecture                         | Objective                                  | <b>Topics Covered</b>                                | Activity/                     |
| T                               | T : 1 00 . 0                               | I G                                                  | Assignments                   |
| Lecture 36: Effect of Structure | Examine the effect of                      | Influence of molecular structure                     | Predict the reactivity of     |
| on Reactivity                   | electron-donating and electron-withdrawing | molecular structure on reaction rates and            | reactivity of substituted     |
| on Reactivity                   | groups on reactivity.                      | reactivity.                                          | benzenes in                   |
|                                 | 5-saps on reactivity.                      | • Electronic Effects:                                | electrophilic                 |
|                                 |                                            | Inductive,                                           | substitution.                 |
|                                 |                                            | resonance,                                           |                               |
|                                 |                                            | hyperconjugation.                                    |                               |
|                                 |                                            | • Steric Effects: How                                |                               |
|                                 |                                            | bulky groups                                         |                               |
|                                 |                                            | influence reaction pathways.                         |                               |
|                                 |                                            | paurways.                                            |                               |

| Lecture 37:                                                                                                     | Analyze a reaction                                                                                                    | ☐ Introduction to the                                                                                                                                                                                                | Calculate the p                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The Hammett                                                                                                     | Analyze a reaction using Hammett plots                                                                                |                                                                                                                                                                                                                      | Calculate the ρ value for a reaction                                                                                                                                     |
|                                                                                                                 | 1                                                                                                                     | 1                                                                                                                                                                                                                    |                                                                                                                                                                          |
| Equation                                                                                                        | and data.                                                                                                             | Quantitative analysis of                                                                                                                                                                                             | and explain its                                                                                                                                                          |
|                                                                                                                 |                                                                                                                       | substituent effects.                                                                                                                                                                                                 | significance.                                                                                                                                                            |
|                                                                                                                 |                                                                                                                       | $\Box$ Substituent constants ( $\sigma$ )                                                                                                                                                                            |                                                                                                                                                                          |
|                                                                                                                 |                                                                                                                       | and reaction constants ( $\rho$ ).                                                                                                                                                                                   |                                                                                                                                                                          |
| Lecture 38:                                                                                                     | Apply LFER to study                                                                                                   | <ul> <li>Understanding</li> </ul>                                                                                                                                                                                    | Identify reactions                                                                                                                                                       |
| Linear Free                                                                                                     | the effect of                                                                                                         | Linear Free                                                                                                                                                                                                          | where LFER is                                                                                                                                                            |
| Energy                                                                                                          | substituents in a                                                                                                     | Energy                                                                                                                                                                                                               | applicable.                                                                                                                                                              |
| Relationships                                                                                                   | nucleophilic                                                                                                          | Relationships                                                                                                                                                                                                        | 11                                                                                                                                                                       |
| (LFER)                                                                                                          | substitution reaction.                                                                                                | (LFER).                                                                                                                                                                                                              |                                                                                                                                                                          |
| (El Elt)                                                                                                        | Substitution reaction.                                                                                                | • How the Hammett                                                                                                                                                                                                    |                                                                                                                                                                          |
|                                                                                                                 |                                                                                                                       | equation fits within                                                                                                                                                                                                 |                                                                                                                                                                          |
|                                                                                                                 |                                                                                                                       | <u> </u>                                                                                                                                                                                                             |                                                                                                                                                                          |
| T                                                                                                               |                                                                                                                       | LFER principles.                                                                                                                                                                                                     | G 1 11                                                                                                                                                                   |
| Lecture 39:                                                                                                     | Compare the Taft                                                                                                      | ☐ Introduction to the <b>Taft</b>                                                                                                                                                                                    | Solve problems                                                                                                                                                           |
| The Taft Equation                                                                                               | equation with the                                                                                                     | Equation: Understanding                                                                                                                                                                                              | using the Taft                                                                                                                                                           |
|                                                                                                                 | Hammett equation in                                                                                                   | steric and polar effects in                                                                                                                                                                                          | equation to predict                                                                                                                                                      |
|                                                                                                                 | predicting reaction                                                                                                   | reactions.                                                                                                                                                                                                           | reaction rates.                                                                                                                                                          |
|                                                                                                                 | behavior.                                                                                                             | ☐ Taft's constants and their                                                                                                                                                                                         |                                                                                                                                                                          |
|                                                                                                                 |                                                                                                                       | application in predicting                                                                                                                                                                                            |                                                                                                                                                                          |
|                                                                                                                 |                                                                                                                       | reaction outcomes.                                                                                                                                                                                                   |                                                                                                                                                                          |
| Lecture 40:                                                                                                     | Problem-solving                                                                                                       | Comprehensive review of                                                                                                                                                                                              | Prepare for the                                                                                                                                                          |
| Review and                                                                                                      | session with focus on                                                                                                 | all major concepts:                                                                                                                                                                                                  | final quiz on                                                                                                                                                            |
| Problem-Solving                                                                                                 | advanced mechanism                                                                                                    | J 1                                                                                                                                                                                                                  | reaction                                                                                                                                                                 |
| Session                                                                                                         | determination.                                                                                                        |                                                                                                                                                                                                                      | mechanisms,                                                                                                                                                              |
| Session                                                                                                         | determination.                                                                                                        |                                                                                                                                                                                                                      | focusing on                                                                                                                                                              |
|                                                                                                                 |                                                                                                                       |                                                                                                                                                                                                                      | structure and                                                                                                                                                            |
|                                                                                                                 |                                                                                                                       |                                                                                                                                                                                                                      |                                                                                                                                                                          |
|                                                                                                                 |                                                                                                                       |                                                                                                                                                                                                                      | reactivity                                                                                                                                                               |
|                                                                                                                 |                                                                                                                       |                                                                                                                                                                                                                      | 1.4:1.:                                                                                                                                                                  |
| TI 4 IV.                                                                                                        | Al'                                                                                                                   | Nie dans L'ila Callad'ant                                                                                                                                                                                            | relationships.                                                                                                                                                           |
| Unit IV:                                                                                                        |                                                                                                                       | Nucleophilic Substitution                                                                                                                                                                                            | relationships.                                                                                                                                                           |
| Week 9                                                                                                          | Introduction to Nucleop                                                                                               | philic Substitution                                                                                                                                                                                                  | ·                                                                                                                                                                        |
|                                                                                                                 |                                                                                                                       |                                                                                                                                                                                                                      | Activity/                                                                                                                                                                |
| Week 9<br>Lecture                                                                                               | Introduction to Nucleop Objective                                                                                     | Dhilic Substitution Topics Covered                                                                                                                                                                                   | Activity/<br>Assignments                                                                                                                                                 |
| Week 9 Lecture Lecture 41:                                                                                      | Objective Overview of Aliphatic                                                                                       | Topics Covered  Introduction to SN2 and                                                                                                                                                                              | Activity/ Assignments Discuss common                                                                                                                                     |
| Week 9 Lecture  Lecture 41: Introduction to                                                                     | Objective  Overview of Aliphatic Nucleophilic                                                                         | Introduction to SN2 and SN1 mechanisms: Key                                                                                                                                                                          | Activity/ Assignments  Discuss common examples of SN1                                                                                                                    |
| Week 9 Lecture  Lecture 41: Introduction to Nucleophilic                                                        | Objective Overview of Aliphatic                                                                                       | Introduction to SN2 and SN1 mechanisms: Key concepts, differences, and                                                                                                                                               | Activity/ Assignments  Discuss common examples of SN1 and SN2 reactions                                                                                                  |
| Week 9 Lecture  Lecture 41: Introduction to                                                                     | Objective  Overview of Aliphatic Nucleophilic                                                                         | Introduction to SN2 and SN1 mechanisms: Key                                                                                                                                                                          | Activity/ Assignments  Discuss common examples of SN1 and SN2 reactions (e.g., methyl                                                                                    |
| Week 9 Lecture  Lecture 41: Introduction to Nucleophilic                                                        | Objective  Overview of Aliphatic Nucleophilic                                                                         | Introduction to SN2 and SN1 mechanisms: Key concepts, differences, and                                                                                                                                               | Activity/ Assignments  Discuss common examples of SN1 and SN2 reactions (e.g., methyl bromide with                                                                       |
| Week 9 Lecture  Lecture 41: Introduction to Nucleophilic Substitution                                           | Objective Overview of Aliphatic Nucleophilic Substitution.                                                            | Introduction to SN2 and SN1 mechanisms: Key concepts, differences, and examples.                                                                                                                                     | Activity/ Assignments  Discuss common examples of SN1 and SN2 reactions (e.g., methyl bromide with hydroxide).                                                           |
| Week 9 Lecture  Lecture 41: Introduction to Nucleophilic Substitution  Lecture 42:                              | Objective Overview of Aliphatic Nucleophilic Substitution.  Compare the reaction                                      | Introduction to SN2 and SN1 mechanisms: Key concepts, differences, and examples.                                                                                                                                     | Activity/ Assignments  Discuss common examples of SN1 and SN2 reactions (e.g., methyl bromide with hydroxide).  Research examples                                        |
| Week 9 Lecture  Lecture 41: Introduction to Nucleophilic Substitution  Lecture 42: Mixed SN1 and                | Objective Overview of Aliphatic Nucleophilic Substitution.  Compare the reaction conditions that favor                | Introduction to SN2 and SN1 mechanisms: Key concepts, differences, and examples.  □ Introduction to mixed SN1/SN2 mechanisms:                                                                                        | Activity/ Assignments  Discuss common examples of SN1 and SN2 reactions (e.g., methyl bromide with hydroxide).  Research examples of reactions                           |
| Week 9 Lecture  Lecture 41: Introduction to Nucleophilic Substitution  Lecture 42:                              | Overview of Aliphatic Nucleophilic Substitution.  Compare the reaction conditions that favor mixed SN1/SN2            | Introduction to SN2 and SN1 mechanisms: Key concepts, differences, and examples.  □ Introduction to mixed SN1/SN2 mechanisms: When both mechanisms                                                                   | Activity/ Assignments  Discuss common examples of SN1 and SN2 reactions (e.g., methyl bromide with hydroxide).  Research examples of reactions showing mixed             |
| Week 9 Lecture  Lecture 41: Introduction to Nucleophilic Substitution  Lecture 42: Mixed SN1 and                | Objective Overview of Aliphatic Nucleophilic Substitution.  Compare the reaction conditions that favor                | Introduction to SN2 and SN1 mechanisms: Key concepts, differences, and examples.  □ Introduction to mixed SN1/SN2 mechanisms: When both mechanisms may be operative.                                                 | Activity/ Assignments  Discuss common examples of SN1 and SN2 reactions (e.g., methyl bromide with hydroxide).  Research examples of reactions                           |
| Week 9 Lecture  Lecture 41: Introduction to Nucleophilic Substitution  Lecture 42: Mixed SN1 and                | Overview of Aliphatic Nucleophilic Substitution.  Compare the reaction conditions that favor mixed SN1/SN2            | Introduction to SN2 and SN1 mechanisms: Key concepts, differences, and examples.  Introduction to mixed SN1/SN2 mechanisms: When both mechanisms may be operative.  Conditions that influence                        | Activity/ Assignments  Discuss common examples of SN1 and SN2 reactions (e.g., methyl bromide with hydroxide).  Research examples of reactions showing mixed             |
| Week 9 Lecture  Lecture 41: Introduction to Nucleophilic Substitution  Lecture 42: Mixed SN1 and SN2 Mechanisms | Overview of Aliphatic Nucleophilic Substitution.  Compare the reaction conditions that favor mixed SN1/SN2 reactions. | Introduction to SN2 and SN1 mechanisms: Key concepts, differences, and examples.  Introduction to mixed SN1/SN2 mechanisms: When both mechanisms may be operative.  Conditions that influence the pathway selection. | Activity/ Assignments  Discuss common examples of SN1 and SN2 reactions (e.g., methyl bromide with hydroxide).  Research examples of reactions showing mixed mechanisms. |
| Week 9 Lecture  Lecture 41: Introduction to Nucleophilic Substitution  Lecture 42: Mixed SN1 and                | Overview of Aliphatic Nucleophilic Substitution.  Compare the reaction conditions that favor mixed SN1/SN2            | Introduction to SN2 and SN1 mechanisms: Key concepts, differences, and examples.  Introduction to mixed SN1/SN2 mechanisms: When both mechanisms may be operative.  Conditions that influence                        | Activity/ Assignments  Discuss common examples of SN1 and SN2 reactions (e.g., methyl bromide with hydroxide).  Research examples of reactions showing mixed             |

| Nucleophilic<br>Internal)                                             | product for an SNi reaction.                                                           | reactions.  Importance of stereochemistry and inversion/retention in the product.                                                            | substitution reactions.                                                                       |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Lecture 44: Single Electron Transfer (SET) Mechanisms                 | Draw mechanisms involving SET pathways.                                                | <ul> <li>Introduction to SET in nucleophilic substitution.</li> <li>Examples of radical pathways in substitution reactions.</li> </ul>       | Identify a radical nucleophilic substitution and explain its mechanism.                       |
| Lecture 45: Neighbouring Group Participation (NGP) Week 10            | Show examples where NGP assists the reaction (e.g., alkyl halides).                    | <ul> <li>Neighbouring group participation (NGP):</li> <li>Definition and types.</li> <li>□ Participation by π bonds and σ bonds.</li> </ul>  | Research anchimeric assistance and provide an example.                                        |
| Lecture                                                               | Objective                                                                              | <b>Topics Covered</b>                                                                                                                        | Activity/<br>Assignments                                                                      |
| Lecture 46:<br>Anchimeric<br>Assistance                               | Analyze a reaction with anchimeric assistance and discuss its stereochemistry.         | <ul> <li>□ Detailed discussion of anchimeric assistance in substitution.</li> <li>□ Impact on reaction rates and stereochemistry.</li> </ul> | Find real-world reactions where anchimeric assistance significantly affects the mechanism.    |
| Lecture 47: Classical and Non-Classical Carbocations                  | Compare the stability of different carbocations and how they influence substitution.   | ☐ Understanding classical carbocations and non-classical carbocations. ☐ Discussion of phenonium ions and their stability.                   | Draw and explain<br>the difference<br>between classical<br>and non-classical<br>carbocations. |
| Lecture 48: Factors Affecting Reactivity in Nucleophilic Substitution | Predict reactivity in a given nucleophilic substitution with different leaving groups. | Effect of substrate structure, nucleophile, leaving group, and solvent on reactivity.                                                        | Case study: Comparison of nucleophiles and their reactivity in SN1/SN2 reactions.             |
| Lecture 49: Ambident Nucleophiles and Regioselectivity                | Examine examples of ambident nucleophiles (e.g., cyanide ion, enolates).               | ☐ Introduction to ambident nucleophiles: How and why they attack different sites. ☐ Regioselectivity in substitution reactions.              | Identify a reaction where regioselectivity plays a key role and explain why.                  |
| Lecture 50:<br>Substitution at<br>Allylic, Aliphatic                  | Discuss specific examples such as allylic bromination and                              | □ Nucleophilic substitution at unique positions: Allylic, aliphatic                                                                          | Draw mechanisms<br>for substitution at<br>allylic and vinylic                                 |

| Trigonal, and<br>Vinylic Carbons                                  | vinylic substitution.                                                                             | trigonal, and vinylic.  Examples and discussion on reactivity in these contexts.                        | positions.                                                                                                         |  |  |  |  |  |  |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Week 11                                                           | Aromatic Nucleophilic S                                                                           | Aromatic Nucleophilic Substitution: Overview                                                            |                                                                                                                    |  |  |  |  |  |  |
| Lecture                                                           | Objective                                                                                         | <b>Topics Covered</b>                                                                                   | Activity/<br>Assignments                                                                                           |  |  |  |  |  |  |
| Lecture 51: Introduction to Aromatic Nucleophilic Substitution    | favor aromatic nucleophilic substitution (e.g., strong electronwithdrawing groups).               | <ul><li>☐ Key differences from aliphatic.</li><li>☐ ArSN1 and ArSN2 mechanisms.</li></ul>               | Predict the products of an ArSN2 reaction with a given substrate and nucleophile.                                  |  |  |  |  |  |  |
| Lecture 52: Benzyne and SRN1 Mechanisms                           | Mechanism and examples of <b>Benzyne</b> formation in nucleophilic substitution.                  | SRN1 mechanism: Radical involvement in nucleophilic substitution.                                       | Draw the benzyne mechanism and discuss factors affecting benzyne formation.                                        |  |  |  |  |  |  |
| Lecture 53: Factors Affecting Reactivity in Aromatic Substitution | Analyze the effect of different substituents on aromatic nucleophilic substitution rates.         | Substrate structure, leaving group, and nucleophile effects in aromatic nucleophilic substitution.      | Research and present a reaction where aromatic nucleophilic substitution was influenced by a specific substituent. |  |  |  |  |  |  |
| Lecture 54: Rearrangement Reactions: Von- Richter,                |                                                                                                   | ☐ Introduction to the <b>Von-Richter</b> , Mechanisms and applications of these                         |                                                                                                                    |  |  |  |  |  |  |
| Lecture 55:<br>Sommelet-Hauser,<br>and Smiles                     |                                                                                                   | Introduction to the Sommelet-Hauser, and Smiles rearrangements.  ☐ Mechanisms and applications of these |                                                                                                                    |  |  |  |  |  |  |
| Unit V:                                                           | Aliphatic Electrophi<br>Substitution, and Elimin                                                  | · · · · · · · · · · · · · · · · · · ·                                                                   | itic Electrophilic                                                                                                 |  |  |  |  |  |  |
| Week 12                                                           |                                                                                                   | ic Electrophilic Substitution                                                                           |                                                                                                                    |  |  |  |  |  |  |
| Lecture                                                           | Objective                                                                                         | Topics Covered                                                                                          | Activity/<br>Assignments                                                                                           |  |  |  |  |  |  |
| Lecture 56: Overview of Aliphatic Electrophilic Substitution.     | Discuss the basic principles of electrophilic substitution reactions and provide simple examples. | Introduction to SE2 and SE1 mechanisms.                                                                 | Draw the mechanisms for SE2 and SE1 reactions and compare their key features.                                      |  |  |  |  |  |  |

|                                                             | I                                                                                                                                   |                                                                                                                                                                                                                                                                |                                                                                                                                        |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Lecture 57:                                                 | Analyze how the                                                                                                                     | ☐ Double bond shifts in                                                                                                                                                                                                                                        | Research examples                                                                                                                      |
| Electrophilic                                               | substrate structure and                                                                                                             | electrophilic substitution.                                                                                                                                                                                                                                    | of electrophilic                                                                                                                       |
| Substitution                                                | solvent impact the                                                                                                                  | ☐ Effect of substrate,                                                                                                                                                                                                                                         | substitution                                                                                                                           |
| Accompanied by                                              | reactivity of                                                                                                                       | leaving group, and solvent                                                                                                                                                                                                                                     | reactions where a                                                                                                                      |
| Double Bond                                                 | electrophilic                                                                                                                       | polarity on reactivity.                                                                                                                                                                                                                                        | double bond shift                                                                                                                      |
| Shifts                                                      | substitution reactions.                                                                                                             |                                                                                                                                                                                                                                                                | occurs.                                                                                                                                |
| Lecture 58:                                                 | Overview of <b>Aromatic</b>                                                                                                         | The Arenium Ion                                                                                                                                                                                                                                                | Show an example                                                                                                                        |
| Introduction to                                             | Electrophilic                                                                                                                       | Mechanism: Key steps and                                                                                                                                                                                                                                       | of an aromatic                                                                                                                         |
| Aromatic                                                    | <b>Substitution</b> and                                                                                                             | energy profile.                                                                                                                                                                                                                                                | electrophilic                                                                                                                          |
| Electrophilic                                               | comparison with                                                                                                                     | Draw the arenium ion                                                                                                                                                                                                                                           | substitution (e.g.,                                                                                                                    |
| Substitution                                                | aliphatic substitution.                                                                                                             | mechanism for a specific                                                                                                                                                                                                                                       | nitration of                                                                                                                           |
|                                                             |                                                                                                                                     | reaction and predict the                                                                                                                                                                                                                                       | benzene) and draw                                                                                                                      |
|                                                             |                                                                                                                                     | product.                                                                                                                                                                                                                                                       | the mechanism.                                                                                                                         |
| Lecture 59:                                                 | Role of electron-                                                                                                                   | Factors influencing                                                                                                                                                                                                                                            | Predict the major                                                                                                                      |
| Orientation and                                             | donating and electron-                                                                                                              | orientation and reactivity in                                                                                                                                                                                                                                  | products for                                                                                                                           |
| Reactivity in                                               | withdrawing groups in                                                                                                               | aromatic substitution.                                                                                                                                                                                                                                         | electrophilic                                                                                                                          |
| Aromatic                                                    | directing ortho, meta,                                                                                                              | Discuss examples of                                                                                                                                                                                                                                            | substitution on                                                                                                                        |
| Electrophilic                                               | and <b>para</b> positions.                                                                                                          | reactions where substituents                                                                                                                                                                                                                                   | toluene and                                                                                                                            |
| Substitution                                                | una para positions.                                                                                                                 | direct to different positions                                                                                                                                                                                                                                  | nitrobenzene.                                                                                                                          |
| Buostitution                                                |                                                                                                                                     | on the aromatic ring.                                                                                                                                                                                                                                          | mu occuzene.                                                                                                                           |
| Lecture 60:                                                 | Research the factors                                                                                                                | ☐ Detailed analysis of the                                                                                                                                                                                                                                     | Discuss examples                                                                                                                       |
| Ortho/Para Ratio                                            | that increase the                                                                                                                   | ortho/para ratio in                                                                                                                                                                                                                                            | where ipso attack                                                                                                                      |
| and Ipso Attack                                             | ortho/para ratio in a                                                                                                               | electrophilic substitution.                                                                                                                                                                                                                                    | is significant in                                                                                                                      |
| and ipso Attack                                             | specific reaction.                                                                                                                  | ☐ Introduction to <b>ipso</b>                                                                                                                                                                                                                                  | aromatic                                                                                                                               |
|                                                             | specific reaction.                                                                                                                  | attack and its significance.                                                                                                                                                                                                                                   | substitution                                                                                                                           |
| Week 13                                                     |                                                                                                                                     | attack and its significance.                                                                                                                                                                                                                                   | Substitution                                                                                                                           |
| Lecture                                                     | Objective                                                                                                                           | <b>Topics Covered</b>                                                                                                                                                                                                                                          | Activity/                                                                                                                              |
| Lecture                                                     | Objective                                                                                                                           | Topics Covered                                                                                                                                                                                                                                                 | Assignments                                                                                                                            |
| Lecture 61:                                                 | Diazonium coupling:                                                                                                                 | Walkthrough of the                                                                                                                                                                                                                                             | Provide examples of                                                                                                                    |
| Diazonium                                                   | Mechanism and                                                                                                                       | mechanism for diazonium                                                                                                                                                                                                                                        | dyes synthesized via                                                                                                                   |
| Coupling                                                    | importance in organic                                                                                                               | coupling with an aromatic                                                                                                                                                                                                                                      | diazonium coupling                                                                                                                     |
| Reaction                                                    | synthesis.                                                                                                                          | 1                                                                                                                                                                                                                                                              | reactions.                                                                                                                             |
|                                                             | Symmesis.                                                                                                                           | compound.                                                                                                                                                                                                                                                      | reactions.                                                                                                                             |
|                                                             | synthesis.                                                                                                                          |                                                                                                                                                                                                                                                                | reactions.                                                                                                                             |
|                                                             | synthesis.                                                                                                                          | Applications of diazonium salts in producing azo                                                                                                                                                                                                               | reactions.                                                                                                                             |
|                                                             | synthesis.                                                                                                                          | Applications of diazonium                                                                                                                                                                                                                                      | reactions.                                                                                                                             |
| Lecture 62:                                                 | Draw the mechanism of                                                                                                               | Applications of diazonium salts in producing azo                                                                                                                                                                                                               | Mechanism                                                                                                                              |
|                                                             |                                                                                                                                     | Applications of diazonium salts in producing azo compounds.                                                                                                                                                                                                    |                                                                                                                                        |
| Lecture 62:                                                 | Draw the mechanism of the Vilsmeier reaction                                                                                        | Applications of diazonium salts in producing azo compounds.  □ Introduction to the                                                                                                                                                                             | Mechanism walkthrough with a focus on                                                                                                  |
| Lecture 62:<br>Vilsmeier                                    | Draw the mechanism of the Vilsmeier reaction for a given aromatic                                                                   | Applications of diazonium salts in producing azo compounds.  □ Introduction to the Vilsmeier reaction. □ Mechanism and                                                                                                                                         | Mechanism<br>walkthrough with a                                                                                                        |
| Lecture 62:<br>Vilsmeier                                    | Draw the mechanism of the Vilsmeier reaction                                                                                        | Applications of diazonium salts in producing azo compounds.  ☐ Introduction to the Vilsmeier reaction.  ☐ Mechanism and application of the Vilsmeier                                                                                                           | Mechanism walkthrough with a focus on electrophilic aromatic                                                                           |
| Lecture 62:<br>Vilsmeier                                    | Draw the mechanism of the Vilsmeier reaction for a given aromatic                                                                   | Applications of diazonium salts in producing azo compounds.  □ Introduction to the Vilsmeier reaction. □ Mechanism and application of the Vilsmeier reaction in aromatic                                                                                       | Mechanism walkthrough with a focus on electrophilic                                                                                    |
| Lecture 62:<br>Vilsmeier<br>Reaction                        | Draw the mechanism of<br>the Vilsmeier reaction<br>for a given aromatic<br>compound.                                                | Applications of diazonium salts in producing azo compounds.  □ Introduction to the Vilsmeier reaction. □ Mechanism and application of the Vilsmeier reaction in aromatic formylation.                                                                          | Mechanism walkthrough with a focus on electrophilic aromatic substitution.                                                             |
| Lecture 62: Vilsmeier Reaction  Lecture 63:                 | Draw the mechanism of the Vilsmeier reaction for a given aromatic compound.  Show a detailed energy                                 | Applications of diazonium salts in producing azo compounds.  □ Introduction to the Vilsmeier reaction. □ Mechanism and application of the Vilsmeier reaction in aromatic formylation.  Mechanism of the                                                        | Mechanism walkthrough with a focus on electrophilic aromatic                                                                           |
| Lecture 62: Vilsmeier Reaction  Lecture 63: Gattermann-Koch | Draw the mechanism of the Vilsmeier reaction for a given aromatic compound.  Show a detailed energy profile for the                 | Applications of diazonium salts in producing azo compounds.  □ Introduction to the Vilsmeier reaction. □ Mechanism and application of the Vilsmeier reaction in aromatic formylation.  Mechanism of the Gattermann-Koch reaction                               | Mechanism walkthrough with a focus on electrophilic aromatic substitution.  Predict the products                                       |
| Lecture 62: Vilsmeier Reaction  Lecture 63:                 | Draw the mechanism of the Vilsmeier reaction for a given aromatic compound.  Show a detailed energy profile for the Gattermann-Koch | Applications of diazonium salts in producing azo compounds.  □ Introduction to the Vilsmeier reaction. □ Mechanism and application of the Vilsmeier reaction in aromatic formylation.  Mechanism of the Gattermann-Koch reaction and its use in formylation of | Mechanism walkthrough with a focus on electrophilic aromatic substitution.  Predict the products of a Gattermann-                      |
| Lecture 62: Vilsmeier Reaction  Lecture 63: Gattermann-Koch | Draw the mechanism of the Vilsmeier reaction for a given aromatic compound.  Show a detailed energy profile for the                 | Applications of diazonium salts in producing azo compounds.  □ Introduction to the Vilsmeier reaction. □ Mechanism and application of the Vilsmeier reaction in aromatic formylation.  Mechanism of the Gattermann-Koch reaction                               | Mechanism walkthrough with a focus on electrophilic aromatic substitution.  Predict the products of a Gattermann- Koch reaction with a |

| Introduction to Elimination Reactions: E2 Mechanism                                                                  | for an E2 elimination reaction and discuss the stereochemistry.                                                                                                  | Elimination Reactions.  Detailed study of the E2 mechanism: Characteristics, stereochemistry, and kinetics.                                                                                                                          | stereoselectivity.                                                                                                                                  |  |  |
|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Lecture 65:<br>E1 Mechanism                                                                                          | focusing on the stability of intermediates, and factors of intermediates. specification influencing the reaction.                                                |                                                                                                                                                                                                                                      | mechanism for a specific compound                                                                                                                   |  |  |
| Week 14                                                                                                              |                                                                                                                                                                  |                                                                                                                                                                                                                                      |                                                                                                                                                     |  |  |
| Lecture                                                                                                              | Objective                                                                                                                                                        | <b>Topics Covered</b>                                                                                                                                                                                                                | Activity/<br>Assignments                                                                                                                            |  |  |
| Lecture 66:<br>ElcB Mechanism                                                                                        | Discuss an example where the ElcB mechanism is operative and show the stepwise pathway.                                                                          | ☐ Introduction to the ElcB mechanism and its differences from E1 and E2. ☐ Conditions that favour the ElcB pathway.                                                                                                                  | Research an example of an elimination reaction following the ElcB mechanism.                                                                        |  |  |
| Lecture 67: Orientation of the Double Bond in Elimination Reactions  Lecture 68: Reactivity in Elimination Reactions | Apply Zaitsev's and Hofmann's rules to predict the major product of an elimination reaction.  Analyze the role of a strong vs. weak base in E1 and E2 reactions. | ☐ Factors determining the orientation of the double bond in elimination reactions. ☐ Zaitsev's Rule vs. Hofmann's Rule.  Effect of substrate structure, base, leaving group, and solvent on the reactivity of elimination reactions. | Predict the major product for an elimination reaction involving a bulky base.  Compare the reactivity of different leaving groups in an elimination |  |  |
| Lecture 69: Pyrolytic Elimination Mechanism                                                                          | l .                                                                                                                                                              | ☐ Pyrolysis of esters, amines, and other functional groups.                                                                                                                                                                          | reaction.  Research the pyrolytic elimination of esters and draw the mechanism.                                                                     |  |  |
| Lecture 70:<br>Summary and<br>Review                                                                                 | Work through practice problems on substitution and elimination mechanisms.                                                                                       | Problem-solving session to consolidate understanding.                                                                                                                                                                                | Prepare for a quiz on the mechanisms and factors affecting substitution and elimination reactions.                                                  |  |  |
| Week 15                                                                                                              | Review and Exam Prep                                                                                                                                             |                                                                                                                                                                                                                                      |                                                                                                                                                     |  |  |
| Lecture                                                                                                              | Objective                                                                                                                                                        | <b>Topics Covered</b>                                                                                                                                                                                                                | Activity/                                                                                                                                           |  |  |

|             |                                               |                                                                   | Assignments |
|-------------|-----------------------------------------------|-------------------------------------------------------------------|-------------|
| Lecture 71: | Review key concepts, problem-solving sessions | Practice exam questions, discuss answers and clarify doubts       |             |
| Lecture 72: | Review key concepts, problem-solving sessions | Practice exam questions, discuss answers and clarify doubts       |             |
| Lecture 73: | Review key concepts, problem-solving sessions | Practice exam questions, discuss answers and clarify doubts       |             |
| Lecture 74: | Review key concepts, problem-solving sessions | Practice exam questions, discuss answers and clarify doubts       |             |
| Lecture 75: | Review key concepts, problem-solving sessions | Practice exam questions,<br>discuss answers and clarify<br>doubts |             |
| Assessment  |                                               |                                                                   |             |

| CC -IV                     | Physical Chemistry<br>Lab | Credits: 5                                       | Full Marks: 70    |
|----------------------------|---------------------------|--------------------------------------------------|-------------------|
|                            | To                        | eacher:                                          |                   |
| Unit I                     |                           |                                                  |                   |
| Week 1                     |                           |                                                  |                   |
| Lecture /Topic             | Objective                 | <b>Topics Covered:</b>                           | Activity/ Assignm |
| Lecture 1:                 |                           | To determine the                                 | , ,               |
| Lecture 2:                 |                           | distribution coefficient                         |                   |
| Lecture 3:                 |                           | of Acetic acid Between                           |                   |
|                            |                           | water and benzene by partition method.           |                   |
| Week 2                     |                           | Partition inclined.                              | I                 |
| Lecture /Topic             | Objective                 | <b>Topics Covered:</b>                           | Activity/ Assignn |
| Lecture 4:                 |                           | To determine the                                 |                   |
| Lecture 5:                 |                           | distribution coefficient                         |                   |
| Lecture 6:                 |                           | of Acetic acid Between                           |                   |
|                            |                           | water and benzene by                             |                   |
|                            |                           | partition method.                                |                   |
| Week 3                     |                           |                                                  |                   |
| Lecture                    | Objective                 | <b>Topics Covered:</b>                           | Activity/ Assignn |
| Lecture 7:                 |                           | To determine the                                 |                   |
| Lecture 8:                 |                           | distribution coefficient                         |                   |
| Lecture 9:                 |                           | of Benzoic acid Between                          |                   |
|                            |                           | water and benzene by                             |                   |
| ***                        |                           | partition method.                                |                   |
| Week 4                     |                           | m · C                                            |                   |
| Lecture                    | Objective                 | Topics Covered  Determination of rate            | Activity/ Assignn |
| Lecture 10:<br>Lecture 11: |                           |                                                  |                   |
| Lecture 11:<br>Lecture 12: |                           | constant of hydrolysis of methyl acetate in acid |                   |
| Lecture 12:                |                           | medium.                                          |                   |
| Week 5                     |                           | moutum.                                          |                   |
| Lecture                    | Objective                 | <b>Topics Covered</b>                            | Activity/ Assignn |
| Lecture 13:                | - Sajetti v               | The study of                                     |                   |
| Lecture 14:                |                           | saponification of ethyl                          |                   |
| Lecture 15:                |                           | acetate by sodium                                |                   |
|                            |                           | hydroxide and                                    |                   |
|                            |                           | determination of rate                            |                   |
|                            |                           | constant.                                        |                   |
| Week 6                     |                           |                                                  |                   |
| Lecture                    | Objective                 | <b>Topics Covered</b>                            | Activity/ Assignn |
| Lecture 16:                |                           | Determination of rate                            |                   |
| Lecture 17:                |                           | constant by inversion of                         |                   |
| Lecture 18:                |                           | cane sugar by                                    |                   |

|             |                 | polarimetrically         |                       |  |  |  |
|-------------|-----------------|--------------------------|-----------------------|--|--|--|
| Week 7      |                 |                          |                       |  |  |  |
| Lecture     | Objective       | <b>Topics Covered</b>    | Activity/ Assignments |  |  |  |
| Lecture 19: |                 | Determination of         |                       |  |  |  |
| Lecture 20: |                 | Dissociation constant of |                       |  |  |  |
| Lecture 21: |                 | acetic acid.             |                       |  |  |  |
| Unit IV     |                 |                          |                       |  |  |  |
| Week 8      |                 |                          |                       |  |  |  |
| Lecture     | Objective       | <b>Topics Covered</b>    | Activity/ Assignments |  |  |  |
| Lecture 22: |                 | Determination of         |                       |  |  |  |
| Lecture 23: |                 | Acid-base titration.     |                       |  |  |  |
| Lecture 24: |                 |                          |                       |  |  |  |
| Week 9      |                 |                          |                       |  |  |  |
| Lecture     | Objective       | <b>Topics Covered</b>    | Activity/ Assignments |  |  |  |
| Lecture 25: |                 | Determination of         |                       |  |  |  |
| Lecture 26: |                 | Solubility product of    |                       |  |  |  |
| Lecture 27: |                 | sparingly soluble salt.  |                       |  |  |  |
| Week 10     |                 |                          |                       |  |  |  |
| Lecture     | Objective       | <b>Topics Covered</b>    | Activity/ Assignments |  |  |  |
| Lecture 28: |                 | Water equivalent of      |                       |  |  |  |
| Lecture 29: |                 | calorimeter and          |                       |  |  |  |
| Lecture 30: |                 | determination of Heat of |                       |  |  |  |
|             |                 | solution of potassium    |                       |  |  |  |
|             |                 | nitrate.                 |                       |  |  |  |
| Week 11     |                 |                          |                       |  |  |  |
| Lecture     | Objective       | <b>Topics Covered</b>    | Activity/ Assignments |  |  |  |
| Lecture 31: |                 | Water equivalent of      |                       |  |  |  |
| Lecture 32: |                 | calorimeter and          |                       |  |  |  |
| Lecture 33: |                 | determination of Heat of |                       |  |  |  |
|             |                 | neutralization of strong |                       |  |  |  |
|             |                 | acid and strong base.    |                       |  |  |  |
| Week 12     |                 |                          |                       |  |  |  |
| Lecture     | Objective       | Topics Covered           | Activity/ Assignments |  |  |  |
| Lecture 34: |                 | Water equivalent of      |                       |  |  |  |
|             |                 | calorimeter and          |                       |  |  |  |
| Lecture 35: |                 | determination of         |                       |  |  |  |
|             |                 | Basicity of polybasic    |                       |  |  |  |
|             |                 | acids.                   |                       |  |  |  |
| Week 13     | Review and Exan | n Preparation            |                       |  |  |  |
| Week 14     |                 |                          |                       |  |  |  |
| Assessment  |                 |                          |                       |  |  |  |

**COURSE OUTCOME** 

M.A ECONOMICS

FIRST SEMESTER

**Course Title: Micro Economics Analysis I** 

Course code: CC 01

Credits: 5

Outcome: The paper aims to understand the economic behaviour of individuals, firms, and

markets. It is mainly to equip the students with a rigorous and comprehensive understanding

of the various aspects of consumer behaviour and demand analysis, production theory and

behaviour of costs, the theory of traditional markets, and the equilibrium of firms.

**Course Title: Macro Economics Analysis I** 

Course code: CC 02

**Credits: 5** 

Outcome: Macro Economics-I paper provides an elementary theoretical foundation of key

issues and policies. The paper attempts to discuss the functional relationships between

aggregates. It helps understand the overall structure of the economy in theoretical and

contemporary perspectives for 1st semester postgraduate students.

**Course Title: Ouantitative Method I** 

Course code: CC 03

Credits: 5

Outcome: Outcome of this paper is to develop a mathematical approach in analysis of economic

problems. It mainly focuses on mathematical techniques which are directly useful in economic

analysis. All the techniques are explained with examples of economics.

**Course Title: History of Economic Thought** 

Course Code: CC 04

**Credits: 5** 

Outcome: The course explores the development of economic theories and ideas from ancient to

modern times. It examines key contributions from thinkers like Adam Smith, Karl Marx, John

Maynard Keynes, and others, tracing the evolution of concepts such as capitalism, socialism,

and market economies. Students learn to critically analyze the historical context of economic

theories, understand their impact on contemporary economic policies, and gain insights into

the philosophical and ethical underpinnings of economic thought. The course fosters a deep

understanding of how past economic ideas shape current economic practices and debates.

Course Title: Environments Sustainability (3 credits) & Swachchha Bharat Abhiyan

**Activities (2 credits)** 

**Course Code: AECC 1** 

Credits: 5

Outcome: The course focuses on understanding sustainable practices and the significance of

cleanliness initiatives in India. It examines environmental challenges like pollution, waste

management, and resource conservation, while also exploring the goals and impact of the

Swachh Bharat Abhiyan. Students learn to design and implement sustainability projects,

analyze policies promoting environmental health, and engage in community-based cleanliness

activities. The course aims to cultivate a strong sense of environmental responsibility,

equipping students with the knowledge and skills to contribute to sustainable development and

the Swachh Bharat mission.

SECOND SEMESTER

**Course Title: Indian Economy – Issues & Policies – 1** 

Course Code: CC 05

Credits: 5

Outcome: Issues in the Indian Economy shall provide basic knowledge on national income

accounting, various issues involved in agricultural, industrial, trade sectors, public institutions,

and finally human resources development.

**Course Title: Economics of Growth & Development – 1** 

**Course Code: CC 06** 

Credits: 5

Outcome: The paper provides the fundamental foundation of basic growth and development

issues, approaches, and models. The paper attempts to discuss the structure and change in

variables. It helps understand the overall static and dynamic perspectives of the economy in a

purely theoretical perspective.

**Course Title: Micro Economics Analysis II** 

Course code: CC 07

Credits: 5

Outcome: The paper aims to analyze the economic behaviour of individuals, firms, and

markets. It is mainly to equip the students with a rigorous and comprehensive understanding

of the various aspects of consumer behaviour and Economic Welfare, Firm's behaviour, and

the theory of imperfect markets and equilibrium in different conditions.

**Course Title: Macro Economics Analysis II** 

Course code: CC 08

Credits: 5

**Outcome:** Macro Economics paper provides a theoretical foundation of some advanced issues

and policies. The paper attempts to discuss the functional relationships between economic

aggregates. It helps understand the overall structure of the economy in a theoretical perspective

at higher level.

**Course Title: Statistical Methods** 

Course code: CC 09

Credits: 5

Outcome: The paper aims to familiarise the students with basic statistical techniques. The

whole syllabus is divided into two parts; descriptive and inferential statistics, with major

emphasis on inferential statistics. Statistical techniques are discussed with examples from

economics.

THIRD SEMESTER

Course Title: Indian Economy – Issues & Policies – II

**Course Code: CC 10** 

Credits: 5

Outcome: This section of the Indian Economy will provide knowledge on Population and

employment, along with various issues involved in social aspects like poverty, inequality,

regional imbalance, child labor, etc. Moreover, the fiscal, financial, and external sectors

including the Bihar Economy.

**Course Title: Economics of Growth & Development – II** 

**Course Code: CC 11** 

Credits: 5

Outcome: The paper lays the groundwork for understanding issues in economic growth and

development, exploring various approaches and models like internal and international

migration- Todaro model, choice of technique, and Solow- Swan models of growth. It

examines the structure and changes in key variables, offering insights into both static and

dynamic aspects of the economy from a purely theoretical perspective.

**Course Title: Public Economics** 

**Course Code: CC 12** 

Credits: 5

Outcome: Considering the increasing role of Government in the economy, this course aims to

generate theoretical and empirical understanding of students about different aspects of

Governmental activities and their rationality. It covers fundamental concepts of public

economics, public expenditure, public revenue, and public debt with special reference of the

Indian economy.

**Course Title: International Economics** 

Course Code: CC 13

Credits: 5

Outcome: To provide a strong theoretical background to the students on subject of

international trade. It also helps understand the empirical aspects such as trade reforms and

their impact on the Indian economy.

**Course Title: Research Methodology** 

**Course Code: CC 14** 

Credits: 5

**Outcome:** This is a course for studying various methods for conducting social science research.

It deals with various approaches, methods, tools and techniques. Further, it deals with basic

knowledge on computers, data, and estimation of statistical tools by using software and

analyzing the results of economic relationships, and testing economic hypotheses. By the end

of the course, the student should be able:

• To become familiar with basic knowledge of research methodology and sampling techniques.

• To become familiar with basic knowledge of computers, with statistical software, to draw

distributive tables, graphs, and trend lines.

• To estimate the parameters of multiple regressions with the help of software and interpret

**FOURTH SEMESTER** 

**Course Title: Agricultural Economics** 

**Course Code: EC I** 

**Credits: 5** 

Outcome: The paper makes students aware of different theories on agricultural development

to cement their skills in undertaking research in the field of agricultural economics. It provides

details views of the process of agricultural development in the country since independence.

**Course Title: Financial Economics** 

Course Code: EC I & II

Credits: 5 + 5

Outcome: Taking in to account to the fast development of Indian financial sector and

increasing role of monetary policy, paper aims to generate theoretical and applied

understanding of monetary economics. Whole syllabus is divided in to three parts. First two

modules cover the advanced economic theories and rest two covers financial institutions and

monetary policy, respectively.

**Course Title: Industrial Economics I & II** 

Course Code: EC I & II

**Credits: 5 + 5** 

Outcome: This is a course for Industrial economics that deals with basic to advanced concepts of

industry, market products, industrial locations, and industrial marketing.

# M.A. HISTORY

# PROGRAM OUTCOME

The learning outcome achieved at the end of the programme is as follows:

PO-1) The students get a deeper understanding about History. They learn about the background of the earliest civilizations of the world. They are introduced to the medieval history of Europe, discussing the topics of feudalism, crusade etc. and the rise of Islam and its development in subsequent centuries. They learn about emergence of USA as a world power and its role in contemporary world.

PO-2) Students develop detailed knowledge of Indian history from ancient to the contemporary period. The course sensitizes them to appreciate the notions of continuity and change. They will have knowledge of political, social, economic and cultural history and also of science and technology. They will finally learn about the changes in the world. They will learn about various Historians. The course will help them to know about Bihar's History.

PO-3) The history of the subjugation of the country by Britain sensitize them to the dangers of having internal divisions in the country. The students are familiarized with revolutionary phenomenon's of the world

PO-4) The history of the European and other Asian countries including the history of two world wars and emergence of totalitarian regimes inculcates in them the urgent need for scientific and rational thinking and teaches them to work for a better world.

PO-5) The students get prepared to appear in competitive exams.

PO-6) The students develop knowledge about Dalit tribal and Environment movements. They will also know about Indian theatre, Cinema, Media and above all Human Rights.

# M.A. HISTORY

# **COURSE OUTCOME**

#### Semester I

After completion of course a student will learn.

CC - 1 Histography.

Course Outcome - To introduce the students to major approaches in theorising historians and their writings.

CC - 2 History of Early Civilization and Medieval world.

Course Outcome - To generate awareness about the facts of early civilization and distinctive features of medieval world.

# CC - 3 Early Medieval India

Course Outcome - Enhance understanding for the subject through tours to historical sights. The course will help students to gain insight about Early Medieval India. It will help them to prepare for competitive examination.

CC - 4 Science and Technology in India.

Course Outcome - To develop ability to contextualize Science and Technology to interrelate it with historical development and enhance their research skills.

#### Semester - II

# CC - 5 History of Ideas.

Course Outcome - To deal with different thoughts and ideas of philosophers and identify their influence and interrelations on life.

# CC - 6 History of Europe and Modern World

Course Outcome - To learn about world history. European nations ruled over a large part of the world so, it is important to learn about their history. It helps for pursuing higher studies.

CC - 7 History of Bihar (from the earliest time).

Course Outcome - This helps the student to obtain knowledge about their state, it helps in competitive exams.

CC - 8 Society and Economy in Indian History.

Course Outcome - Students will develop an understanding of society and economy of India, which will help them later in competitions.

# Semester - III

CC - 10 National movement in India.

Course Outcome - The course aims to help students understand nationalism in India. It is important for students to learn the specific historical context of the strugglers against colonial rule in India.

CC - 11 Indian Historians.

Course Outcome - They can learn about the rise of Indian Historians, their writings and views on different aspects of History.

CC - 12 South Asia - 1950 onwards.

Course Outcome - This course will help the students understand the South Asian History and Modern World. The students will learn to evaluate events and development that has shaped South Asia.

CC - 13 USA (1860 - 1990).

Course Outcome - The students are familiarized with American History. Teaching of History of USA is a new thing so students get a wider perspective of the subject. They get an insight into the process of emergence of strongest world power.

CC - 14 Revolution and Revolutionary thought.

Course Outcome - The students are familiarized with the revolutionary phenomenon in the world. They learn to discern the similarities and the specifics of these revolutions.

# Semester - IV

#### **Elective Course - 1**

#### Course Outcome: -

❖ Popular Movements - Students will learn about the Dalit, Tribal, Gender and Environment Movements of India. This will give them insight into the movements and how its saved history.

# Elective Course - 2

#### Course Outcome: -

- a) Indian Theatre
- b) Indian Cinema
- c) Media
- d) Human Rights During the course student will acquaint themselves with aspects of human rights, their importance and this will help them in competitive exams.

# CO & PO Mapping of M.A. (History Hons.)

|                 |         | PO-1 | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 |
|-----------------|---------|------|------|------|------|------|------|
|                 | CO – 1  |      |      |      |      |      |      |
| M. A. Sem. I    | CO – 2  |      |      |      |      |      |      |
|                 | CO – 3  |      |      |      |      |      |      |
|                 | CO – 4  |      |      |      |      |      |      |
|                 | CO – 5  |      |      |      |      |      |      |
| M. A. Sem. II   | CO – 6  |      |      |      |      |      |      |
| Wi. 74. Sem. II | CO – 7  |      |      |      |      |      |      |
|                 | CO – 8  |      |      |      |      |      |      |
|                 | CO – 10 |      |      |      |      |      |      |
|                 | CO – 11 |      |      |      |      |      |      |
| M. A. Sem III   | CO – 12 |      |      |      |      |      |      |
|                 | CO – 13 |      |      |      |      |      |      |
|                 | CO – 14 |      |      |      |      |      |      |
|                 | CO – 15 |      |      |      |      |      |      |
| M. A. Sem IV    | CO – 16 |      |      |      |      |      |      |

#### M.A. HOME SCIENCE

# **Course Outcome - Programme Outcome (CO PO Mapping)**

| PO. No. | Programme Outcome Upon completion of Home Science Degree Programme, the graduates will be able to |  |  |  |  |  |
|---------|---------------------------------------------------------------------------------------------------|--|--|--|--|--|
| PO-1    | Understand and appreciate the role of interdisciplinary sciences in the                           |  |  |  |  |  |
|         | development and well- being of individuals, families and communities.                             |  |  |  |  |  |
| PO-2    | Develop professional skills in food, nutrition, textiles, housing, product making,                |  |  |  |  |  |
|         | communication technologies and human development.                                                 |  |  |  |  |  |
| PO-3    | understand the concept of communication, different media and role of                              |  |  |  |  |  |
|         | interpersonal, group and mass communication in making communication                               |  |  |  |  |  |
|         | effective and barriers in communication.                                                          |  |  |  |  |  |
| PO-4    | Acquire scientific skills in the management of resources and develop basic skills                 |  |  |  |  |  |
|         | for career options in the fields of dietetics, interior designing, textile and fashion            |  |  |  |  |  |
|         | designing.                                                                                        |  |  |  |  |  |
| PO-5    | Acquire academic skills with an aptitude for higher studies /                                     |  |  |  |  |  |
|         | research/entrepreneurship in any branch of the programme.                                         |  |  |  |  |  |

# **Course Outcome (CO)**

# FIRST SEMESTER (M. A. )

**Course Title -: Advance Nutrition** 

Course Code -CC I

CO 1 - Able to understand the techniques of measuring energy expenditure in individuals. Critically evaluate and derive requirements for specific macronutrients.

**Course Title -: Advance Study of Human Development** 

**Course Code - CC II** 

CO 2 - Describe developmental tasks during infancy, preschool and middle childhood years. To develop an awareness of important aspects of all development stages during this phase.

**Course Title -: Concept of Home Management** 

**Course Code - CC III** 

CO 3 - Know Management system and Family resource management and the important features of management process.

**Course Title -: Research Methodology and Statistics** 

**Course Code - CC IV** 

CO 4 - Understand the background and need of research and discuss the research process.

Demonstrate knowledge of the scientific method, purpose and approaches to research.

# **SECOND SEMESTER (M. A. )**

**Course Title -: Therapeutic Nutrition** 

Course Code -CC I

CO 1 - Interpret dietary modification for different diseases. Plan dietary counselling and prepare diet menu.

**Course Title -: Maternal and Infant Nutrition** 

**Course Code - CC II** 

CO 2 - Understand the inter-relationship between nutrition, growth and development during a life cycle.

**Course Title -: Communication Technology** 

**Course Code - CC III** 

CO 3 - Understand various aspect of communication technology and identify different forms of communication.

Course Title -: Women's Studies

Course Code - CC IV

CO 4 - Create awareness about the status of women in India. Understand the personal and civil laws related to women and know existing Women's Welfare Programmes.

Course Title -: Management of textile crafts and apparel industry

Course Code -Paper V

CO V - Understand the origin of different techniques and designs with reference to colours, motifs, layouts of different traditional textiles of India.

# THIRD SEMESTER (M. A. )

**Course Title -: Food Processing** 

**Course Code -CC I** 

CO 1 - Understand food standard and related laws regarding food safety and quality.

**Course Title -: Food Science and experimental food** 

**Course Code - CC II** 

CO 2 - Gain knowledge about food science and acceptability of food. Learn the properties, sources and uses of carbohydrate and protein. Learn various cooking and preservation method to retain/enhance the nutritional quality.

**Course Title -: Institutional food management** 

**Course Code - CC III** 

CO 3 - State and discuss planning and management of food service system.

**Course Title -: Community Nutrition** 

Course Code - CC IV

CO 4 - Familiarize with the concept of public health nutrition and acquire skills in nutritional assessment.

#### **FOURTH SEMESTER (M. A. )**

**Course Title -: Practical Approach to Writing Research Activities** 

**Course Code - EC-1** 

CO 1 - Acquaint with the research method application and preparation of research proposals and report writing.

**Course Title -: Internship / Dissertation / Project / Seminar** 

# **Course Code - EC-II**

CO 2 - Learn effective project organizational skills along with discussion, result, interpretation and paper writing.

CO PO Mapping of M. A. of Home Science

|        | РО    | PO-1 | PO-2 | PO-3 | PO-4 | PO-5 |
|--------|-------|------|------|------|------|------|
|        | СО    |      |      |      |      |      |
| SemI   | CO- 1 |      | X    |      | X    |      |
|        | CO -2 | X    | X    |      |      |      |
|        | CO -3 |      |      |      | X    | X    |
|        | CO -4 | X    |      |      |      | X    |
| SemII  | CO -1 |      | X    |      | X    |      |
|        | CO -2 | X    | X    |      |      |      |
|        | CO -3 |      |      | X    |      |      |
|        | CO -4 | X    |      |      |      |      |
|        | CO -5 |      | X    |      |      | X    |
| SemIII | CO -1 |      | X    |      | X    |      |
|        | CO -2 |      | X    |      | X    |      |
|        | CO -3 |      |      |      | X    | X    |
|        | CO -4 |      | X    |      | X    |      |
| SemIV  | CO -1 |      |      |      | X    | X    |
|        | CO-2  |      |      |      |      | X    |

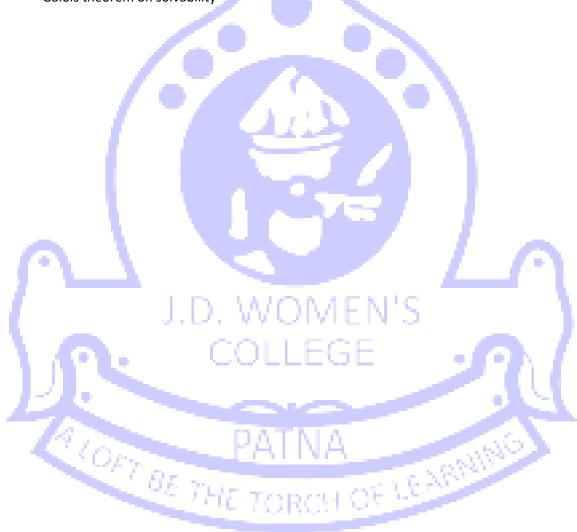


# J.D.WOMEN'S COLLEGE,PATNA

#### **DEPARMENT OF MATHEMATICS**

# **Masters of Science (Mathematics)**

#### **Program Outcome**


- PO-1) This provides the importance of mathematics and its techniques to solve different types of real life applications and provide the limitations of such techniques and the validity of the results.
- PO-2) This provides a way to propose new mathematical and statistical questions and suggest possible software packages and/or computer programming such as Mathematica, Matlab, C,C++ etc. to find the solutions to these questions.
- PO-3) This also provide a platform for acquiring career in higher studies for mathematical and statistical knowledge.
- PO-4) This generates the skills for the appropriate professional activities and demonstrate highest standards of ethical issues in mathematics.
- PO-5) The students may able to use computer calculations as a tool to carry out scientific investigations and develop new variants of the acquired methods, if required by the problem at hand.
- PO-6) After studying this course, the students are supposed to learn following theories and concepts:
  - Group theory,
  - Basic concepts of ring theory
  - Basic concepts of Field theory
  - Basic concepts of Module theory
  - Basic Galois theory
  - Convergence of Sequence and series
  - Use of uniform convergence
  - Integration in higher dimension
  - Function of several variables
  - Stoke's theorem
  - Vector space
  - Inner product spaces
  - Transformations
  - Bilinear forms
  - Sylvester's theorem
  - Basic concepts of graphs

- Lattice Theory
- Lattice Theory and Boolean algebra
- Extended
- Boolean Algebra
- Application of Boolean algebraSet theory
- Basic concept of Fuzzy Set theory
- Basic concept of Graph theory
- Number TheoryArithmetic of Complex numbers
- Integration in contour
- Series in complex domain
- Bilinear transformation
- existence and uniqueness of solution of initial value problem
- Volterra and Fredholm integral equation
- Solution of a family of Initial value problems
- Successive approximations
- Outer measure and Measuribility
- Difference between Riemann and Lebesgue integrals
- Function of bounded variation
- Integration and measure
- Uniform Convergence and completeness
- Basic concept of topological spaces
- countability and separability
- Compactness
- Connectedness
- Regular and Normal spaces
- Congruences and their related theorems
- Mobius inversion formula and congruences of higher degree

7.776

- Different theorems related to higher degree residue
- Continued fraction and their approximation
- Convergence in abstract spaces
- Weak convergence and their consequences
- Normed linear spaces
- Hilbert spaces and Banach spaces
- Introduction to different type of operators
- Introduction of fluid motion
- Equations of motion
- Use of complex analysis in fluid motion
- Circular motion in fluid
- Motion due to circular and rectilinear vertices
- Generalised co-ordinates and degree of freedom
- Canonical equations and principle of least actions
- normal Co-ordinates and vibrations
- Brackets and transformations
- Calculus of variation and shortest distance
- Basics of L.P.P.
- Integer programming
- Wolfe's and Beale's methods
- Game theory

- Mathematical formulation of inventory theory
- Queuing Theory and different models
- Uncertainty theory
- Fano-encoding procedure and encoding
- Group replacement policy and scrap policy
- Utility of machines and their job taken
- UFD
- Field extensions
- Separable Extension
- Galois theorem on solvability



# **M.A MUSIC**

# Programme outcomes (PO) of M.A. Music

- 1. Constructs strong foundation and in-depth knowledge of Classical Music.
- 2. Introduced aesthetics and social significance of the Music.
- 3. Imparts knowledge of folk traditions.
- 4. Ability to be pursue for advance research in Music. 5. Ensures the employability after post graduations.
- 5. Ensures the employability after post graduations.

# Course Outcomes (M.A. Music Vocal) SEMESTER - 1

#### Paper – 1 General and Applied Music -I (Theory)

- Enhances knowledge about prescribed ragas and talas of Indian classical music and develops ability to write notation.
- Enhances knowledge about historical development of Raga of Indian classical music.
- Enhances knowledge about various education systems and Gharanas in Indian classical music.
- Enhances knowledge about classification of various musical Instruments of Indian Music.

#### <u>Paper – 2 History of Indian Music (Vedic Period to 13th Century) - 1 (Theory)</u>

- Spreads awareness about different aspects of music as described in Ancient treatise of India.
- Enhances knowledge about the various aspects of music described in Mahakavyakal and medieval period.
- Enhances knowledge about historical development of swaras.
- Enhances knowledge about various aspects of music as described in treatise of medieval period.

#### **SEMESTER - 2**

#### Paper - 1 General and Applied Music -I (Theory)

- Enhances knowledge about prescribed ragas and talas of Indian classical music and develops ability to write notation.
- Enhances knowledge about classification of various Ragas of Indian Music.
- Enhances knowledge about interdisciplinary areas of Music .
- Enhances knowledge about classification of various musical Instruments of Indian Music.

#### Paper – 2 History of Indian Music (Vedic Period to 13th Century) -2 (Theory)

- Spreads awareness about different aspects of music as described in Vedic treatise of India.
- Enhances knowledge about the various concepts of music as described in Ancient and Medieval period.
- Enhances knowledge about Shruti –Swaras relationship as described in historical Musical treatise.
- Enhances knowledge about various aspects of music as described in treatise of medieval period.

#### Paper – 3 Viva-Voce & Comparative Study of Ragas (Practical)

- Increases confidence to perform as a mature and sensible artist.
- Ability to differentiate the various ragas and enhances the skills to make notation and improvise ragas with their creativity
- Enhances knowledge and ability to demonstrate prescribed talas on hands.
- Develops ability to make notation.

• Develops the teaching abilities in students and make them self dependent in various areas i.e. performing , improvisation

#### Paper - 4 STAGE PERFORMANCE (Practical)

- Enhances knowledge of prescribed Ragangs and imparts Creativity and Systematic improvisation ability in students.
- Develops ability to perform Various classical vocal forms
- Develops ability to perform semi classical vocal forms.
- Enhances ability to perform Tarana.

#### <u>Paper – 5 Basic Ragas (Practical)</u>

- Develops the teaching abilities in students and make them self dependent in various areas
- i.e. performing , improvisation ,
- Develops ability to compose bandish .
- Develops ability to make notation.
- Enhances knowledge and ability to demonstrate prescribed talas on hands.

#### SEMESTER - 3

#### Paper – 1 Applied Music Theory and Musical Compositions-I (Theory)

- Enhances knowledge about prescribed ragas and talas of Indian classical music and develops ability to write notation.
- Enhances knowledge about classification of various Ragas of Indian Music.
- Enhances knowledge about interdisciplinary areas of Music.
- Enhances knowledge about classification of various musical Instruments of Indian Music

#### **Department of philosophy**

# Programme outcomes and Course outcomes of M.A. Philosophy

- PO 1- Students learn to think logically and develop critical, analytical and comprehensive knowledge.
- PO 2-Devoloping the expressive and communicative power of logical reasoning and understanding.
- PO 3- Students learn comparative understanding of Indian and western perspectives on philosophical issues.
- PO 4-Students develop an analytical approach and critically evaluate real life situation by analysing key factors and issues.
- PO 5- Understanding the application of philosophical knowledge and to build a better nation and ensure social equality, human dignity, human rights and learn to co-exist peacefully.
- PO 6- Critically analyse the hypothesis, theories, techniques and definition offered by philosophers and acquiring the capacity to develop new direction and new hypothesis, while doing research work.
- PO 7-Value inculcation among students, they learn about ethical, social, political, aesthetics and environmental values.

# Course Outcomes (CO) of M.A. Philosophy

After Completion of the course, the students will able to:

| M.A.  | Code  | Course       | СО  | Statements                                 |
|-------|-------|--------------|-----|--------------------------------------------|
| Sem I | 9218- | Indian       | CO1 | Understand the Indian process of           |
|       | CC-01 | Epistemology |     | knowledge and wisdom including             |
|       |       |              |     | truth and errors concepts of Indian        |
|       |       |              |     | schools of philosophy                      |
|       |       |              | CO2 | Recognize the characteristic of            |
|       |       |              |     | knowledge, such as how we know and         |
|       |       |              |     | the conditions of justification of         |
|       |       |              |     | knowledge                                  |
|       |       |              | CO3 | Critically evaluate real life situation by |
|       |       |              |     | analysing key factors and issue            |
|       |       |              | CO4 | Understand the six important sources       |
|       |       |              |     | of knowledge.                              |
| Sem I | 9218- | Contemporary | CO1 | Develop a better orientation towards       |

|        | CC 02         | Indian Philosophy                                   |     | Indian Philosophical heritage with a rational point of view.                                                   |
|--------|---------------|-----------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------|
|        |               |                                                     | CO2 | Understand and interpret issues concerning trends of contemporary Indian philosophy                            |
|        |               |                                                     | CO3 | Students achieve the philosophical clarity of Indian tradition in philosophy.                                  |
|        |               |                                                     | CO4 | Evaluate and justify the theories of various contemporary social philosophers.                                 |
|        | 9218-<br>CC 3 | Ancient Greek,<br>Medieval and<br>Modern Philosophy | CO1 | Critically evaluate real life situation by analysing key factors and issue                                     |
|        |               |                                                     | CO2 | Understand the origin of Greek philosophy and the development of philosophy from ancient to the modern period. |
|        |               |                                                     | CO3 | Understanding the metaphysical and epistemological aspects of western philosophy.                              |
|        |               |                                                     | CO4 | Students acquainted the difference between medieval and modern philosophy.                                     |
|        | 9218<br>CC 4  | Indian and Western<br>Ethics                        | CO1 | Understand Indian moral philosophy in comparison with western framework.                                       |
|        |               |                                                     | CO2 | Students will be able to compare the ethical issues of philosophy related to east and west.                    |
|        |               |                                                     | CO3 | Evaluate human conduct in the light of moral principles.                                                       |
|        |               |                                                     | CO4 | Recognize the principle of Dharma and Karma.                                                                   |
| Sem II | 9218-<br>CC 5 | Western Logic                                       | CO1 | Understand the basic logical concepts and language of logic.                                                   |
|        |               |                                                     | CO2 | Asses the important of Symbolic Logic or modern logic.                                                         |

|             |     | CO3 | Acquaint with logical syllogism and its application in other fields                                        |
|-------------|-----|-----|------------------------------------------------------------------------------------------------------------|
|             |     | CO4 | Develop potentiality towards logical reasoning.                                                            |
| 921<br>CC 6 |     | CO1 | Explain various theories related to the knowledge in western perspective.                                  |
|             |     | CO2 | Understand the concept of knowledge, belief and knowledge of other minds.                                  |
|             |     | CO3 | Examine the theories of truth and judgement related knowledge.                                             |
|             |     | CO4 | Understand the nature and role of scepticism in knowledge justification.                                   |
| 921<br>CC-0 |     | CO1 | Understand the Gandhian thoughts and virtues towards. humanity                                             |
|             |     | CO2 | Recognize the basic concepts of peace and conflicts through nonviolence.                                   |
|             |     | CO3 | Appreciate the Gandhian Principles of life, peaceful methods and apply it.                                 |
|             |     | CO4 | Student will able to analyse, perceive, understand and appreciate Gandhian socially relevant ideas.        |
| 921<br>CC-0 | ' ' | CO1 | Acquaint deep knowledge of Indian Metaphysical concepts.                                                   |
|             |     | CO2 | Students will be able to learn in depth analysis of Brahma, Atman and relationship between them and world. |
|             |     | CO3 | Achieve the unique concept of world,<br>God self and Absolute of different<br>schools.                     |
|             |     | CO4 | Students reexamine the critique of metaphysics as offered by some Indian and Western thinkers.             |
| 921<br>cc-0 |     | CO1 | Understand Language origin, structure and functioning of language in ancient Indian philosophy.            |
|             |     | CO2 | Learn the application of linguistics in other areas of philosophy.                                         |

|         |                |                                    | CO3 | Describe and evaluate the different theories of word meanings and sentence meanings.                           |
|---------|----------------|------------------------------------|-----|----------------------------------------------------------------------------------------------------------------|
|         |                |                                    | CO4 | Recognize the concept of Apohavada and Abhava.                                                                 |
| Sem III | 9218-<br>CC-10 | Contemporary<br>Western Philosophy | CO1 | Develop a better orientation towards western philosophical heritage with a rational point of view.             |
|         |                |                                    | CO2 | Understand and interpret issues concerning trends of contemporary western philosophy.                          |
|         |                |                                    | CO3 | Achieve philosophical clarity of western tradition in philosophy.                                              |
|         |                |                                    | CO4 | critical evaluate contemporary western thoughts.                                                               |
|         | 9218-<br>CC-11 | Western Analytical Philosophy      | CO1 | Able to analyse and evaluate critically the language used in philosophy.                                       |
|         |                |                                    | CO2 | Develop analytical and reflective thinking.                                                                    |
|         |                |                                    | CO3 | Achieve openness to new ideas concerning Phenomenological thoughts of western philosophy.                      |
|         |                |                                    | CO4 | Students explore analytic trends in western philosophy, embrace linguistic approaches to philosophical problem |
|         | 9218<br>CC-12  | Indian Logic                       | CO1 | Students will understand the correlation between logic, epistemology and metaphysics.                          |
|         |                |                                    | CO2 | Understand the Indian process of reasoning (tarka)                                                             |
|         |                |                                    | CO3 | Learn about types, components and methods of inferential reasoning as conceived by Indian logicians.           |
|         |                |                                    | CO4 | Learn about the fallacies of inference(hetvabhasa)identified by Indian logicians.                              |
|         | 9218<br>CC-13  | Philosophy of<br>Religion I        | CO1 | Able to move away from irrational blind faith and dogmas.                                                      |

|        |               |                                                       | CO2 | Develop the notion to think philosophically about 'God', 'Religion' and the main questions.                                         |
|--------|---------------|-------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------|
|        |               |                                                       | CO3 | Evaluate the philosophy of humanism in religious context.                                                                           |
|        |               |                                                       | CO4 | Recognise the values mention in the religion regarding freewill, karma and rebirth.                                                 |
|        | 9218<br>CC-14 | Philosophy of<br>Religion II                          | CO1 | Students understand the key concepts of soul and salvation.                                                                         |
|        |               |                                                       | CO2 | Learn to explain the evidence related to problem of evil.                                                                           |
|        |               |                                                       | CO3 | Understand how philosophical theories about self-related to religious believes.                                                     |
|        |               |                                                       | CO4 | Students learn to discuss at lest one form of religious atheism, pluralism.                                                         |
| Sem IV | 9218<br>EC-01 | Sacred Text S.Radhakrishnan's Bhagwad Geeta Dhammapda | CO1 | Developed a comprehensive understanding of Bhagwad Geeta, their application in various field of life.                               |
|        |               |                                                       | CO2 | Develop insights into ethics and values to promote meaning full impact in organizations.                                            |
|        |               |                                                       | CO3 | Students will have developed a comprehensive knowledge of Dhammapada text, their moral teachings and their relevance in human life. |
|        |               |                                                       | CO4 | Able to analyse and interpret the stories apply the teaching to real life situations in the context of Buddhism.                    |
|        | 9218<br>EC16  | Project work /Dissertation                            | CO1 | Able to prepare synopsis for research work.                                                                                         |
|        |               |                                                       | CO2 | Develop skill to select appropriate method for their research work and carryout the research work in systematic way.                |
|        |               |                                                       | CO3 | Understand to frame hypothesis regarding their dissertation.                                                                        |

Attainment and mapping of programme outcomes and course outcomes of M.A. Philosophy

# J D WOMEN'S COLLEGE PATLIPUTRA UNIVERSITY DEPARTMENT OF POLITICAL SCIENCE

P.G. POLITICAL SCIENCE
COURSE OUTCOME

## **COURSE OUTCOME**

#### Semester-1

#### **MPOL-CC-1 POLITICAL THEORY**

**OUTCOME**-To introduce the students to major approaches in theorizing political life and the major concepts in the discourse of Politics.

## MPOL-CC-2 WESTERN POLITICAL THOUGHT

**OUTCOME**-To generate a political awareness among the students about the distinctive features of western political thought.

MPOL-CC-3 COMPARATIVE POLITICS: CONCEPTS & MODEL

**OUTCOME-**This paper deals with the theoretical approaches to the study of comparative poritics.

MPOL-CC-4 INTERNATIONAL RELATIONS: THEORIES & APPROACHES

**OUTCOME** -To deal with different approaches and methods of studying International Relations

#### **SEMESTER-II**

## MPOL-CC-5- INTRODUCTION TO PUBLIC ADMINISTRATION

**OUTCOME-**To help the students to obtain a suitable conceptual perspective on Public Administration.

#### MPOL-CC-6-FOREIGN POLICY OF MAJOR POWERS

**OUTCOME-**To provide a background to the problems of global governance and factors affecting them.

# MPOL-CC-7--CONTEMPORARY ISSUES IN INTERNATIONAL RELATIONS

**OUTCOME**-to provides insights into significant issues that are largely the legacies of Cold War.

# MPOL-CC-8-INDIAN POLITICAL THOUGHT

**OUTCOME-**To generate a critical awareness among the students about distinctive features of tradition of Socio-Religious and political Thought in India.

#### MPOL-CC-9 POLITICAL PROCESSES AND GOVERNANCE IN INDIA

**OUTCOME**-The social and economic processes that underlie the functioning of the political system in India

#### SEMESTER-III

## MPOL-CC-10-POLITICAL INSTITUTIONS AND PRACTICES IN INDIA

**OUTCOME**- The objective of this course will be on contemporary institutional forms and practices, their historical underpinnings, will also be studied through an exploration of the debates that endure from the past.

#### MPOL-CC-11-RESEARCH METHODOLOGY

**OUTCOME**-An attempt is made to relate social science research methods to other courses in syllabus of Political Science.

#### MPOL-CC-12-STATE POLITICS

**OUTCOME**-The Indian Politics is multi-cultural and every state in India is a microcosm of Macro Indian politics. We see different trends in State Politics.

## **MPOL-CC-13-INDIA'S FOREIGN POLICY**

**OUTCOME-**The focus of this paper is the theoretical perspective of the role of compulsions, constraints and conditions, which actually has framed the country's foreign policy for the past five decades.

#### MPOL-CC-14-POLITICAL AND SOCIAL MOVEMENTS

**OUTCOME**-to inform the students of the meaning and importance

of the Political and Social movements and to let them know the reasons

#### SEMESTER-IV

## MPOL-CC-15-INDIAN ADMINISTRATIVE SYSTEM

**OUTCOME** -The purpose of this paper is to acquaint the students with the knowledge of administrative pattern in the Indian federal structure together with its historicity.

## MPOL-CC-16-INTRODUCTION TO INTERNATIONAL LAW

**OUTCOME** -To study the nature, content and the different aspects of international Law pertaining to legal principles of recognition, jurisdiction. Law of Sea, diplomatic immunities and privileges, treaty of obligation and crimes against humanity.

**PROGRAM: MASTERS IN PSYCHOLOGY** 

**SESSION:** 2018-2019

**PROGRAM CODE:** 9221- (01- 18)

- **PSO 1-** To create an in-depth understanding of the core concepts of Psychology.
- **PSO 2-**To enhance knowledge of psychology and its application to create harmony among internal and external environment
- **PSO 3-** To create research oriented theoretical foundation
- **PSO 4-**To help students to get acquainted with recent advances in the field of Psychology

| COURSE<br>CODE | COURSE                         | COURSE OUTCOME                                                                                                                                                                                                                                                                                                                                          |
|----------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CC1            | ADVANCED GENERAL<br>PSYCHOLOGY | CO 1-To understand the concepts of psychological concepts, theories and research methods CO 2-To get familiar with biological, cognitive, social and cultural factors in influencing human behaviour CO 3-To apply psychological principals to diverse population and contexts. CO 4-To understand and apply advanced psychological theories and models |
| CC2            | ADVANCED SOCIAL<br>PSYCHOLOGY  | CO 1-Understanding the social psychological theories concepts and research CO 2= Understanding and Application of social psychological concepts in real life                                                                                                                                                                                            |

| CC3 | RESEARCH<br>METHODOLOGY   | CO 3-To design and conduct research studies using various methods of statistical analysis CO 4-To evaluate the psychological research and its application CO 5-To create ability to design and conduct the research studies                                                                                                                     |
|-----|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CC4 | EXPERIMENTS IN PSYCHOLOGY | CO 1-Understanding the fundamental principles and methods of experimental psychology CO 2-Familiarity with the research designs, experiments and statistical analyses CO 3-To collect and analyse data effectively CO 4-To interpret and report the research findings effectively                                                               |
| CC5 | COGNITIVE<br>PSYCHOLOGY   | CO 1-To understand the fundamental principles and theories of cognitive psychology CO 2-To gain Knowledge of cognitive processes including perception, attention, memory, language and problem solving CO 3-To develop critical and curious mindset in understanding human behaviour CO 4-TO communicate complex cognitive concepts effectively |
| CC6 | NEUROPSYCHOLOGY           | CO 1-Understanding the fundamental principles and theories of neuropsychology CO 2-Familiarity with brain structure and functions CO 3-To get familiar with neurophysiological basis of behaviour                                                                                                                                               |

| CC7  | PSYCHOPATHOLOGY             | CO 1-Provides in- depth examination of the major types of psychopathologies including anxiety mood, personality and other psychotic disorders.  CO 2-To define the significance of psychopathology in understanding mental health  CO 3- Acquaintance with major types of psychopathologies including their symptoms diagnosis and assessment  CO 4-To evaluate the effectiveness of different treatment approaches |
|------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CC8  | STATISTICS FOR PSYCHOLOGY   | CO 1-To help analyse and interpret psychological data using statistical techniques CO 2-To understand the fundamentals of statistical analysis in Psychology CO 3-To get acquainted with different parametric and non- parametric                                                                                                                                                                                   |
| CC9  | PSYCHOLOGICAL<br>ASSESSMENT | CO 1-To diagnose mental health conditions accurately. CO 2-To clarify diagnostic uncertainties and complexities CO 3-Monitoring of treatment progress and adjustment of plans CO 4-Identification of research gaps and areas                                                                                                                                                                                        |
| CC10 | HEALTH<br>PSYCHOLOGY        | CO 1-To understand the psychological factors that influence physical health, illness and wellness.  CO 2-To gain Knowledge about biopsychosocial models of health and illness.  CO 3-To know the psychological aspects of chronic illness, such as pain management, coping strategies, and quality of life.                                                                                                         |

| CC11 | COUNSELLING PSYCHOLOGY        | CO 1-To provide an introduction to the principles and practices of counselling psychology, including the theoretical foundations, assessment and intervention strategies  CO 2-To understand the importance of empathy, genuineness and unconditional positive regard.  CO 3-To understand counselling process, establishing therapeutic relationship and implementing interventions                                                                                              |
|------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CC12 | EDUCATIONAL<br>PSYCHOLOGY     | CO 1-To explore the psychological principles and theories that underlie learning, teaching, and educational experiences.  CO 2-To understand the role of assessment in education, including the use of standardized tests and authentic assessments.  CO 3-To apply educational psychology principles to real world teaching and learning scenarios  CO 4-To develop an understanding of individual differences in learning, including learning styles abilities and disabilities |
| CC13 | HUMAN RESOURSCE<br>MANAGEMENT | CO 1-To help in applying psychological principles to the management of human resources in organizations.  CO 2-To analyse the psychological factors that influence employee behaviour, motivation and performance.                                                                                                                                                                                                                                                                |

|      |                                             | CO 3-To develop training and development programs that address individual differences and learning styles.  CO 4-To design effective recruitment and selection strategies that incorporate psychological principles                                                                                                                                                                                                           |
|------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CC14 | GENERAL<br>COUNSELLING SKILLS               | CO 1-Develop evidence- based interventions and techniques.  CO 2-To develop effective communication skills and inter- personal skills.  CO 3- To develop empathy, self-awareness and self-reflection skills.  CO 4-Ability to work with diverse population and present with various mental health concerns                                                                                                                    |
| EC1  | SPECIALIZATION IN<br>CLINICAL<br>PSYCHOLOGY | CO 1-To help understanding the theories and practices of clinical psychology CO 2- To diagnose mental health disorders using the DSM-5 classification system. CO 3-To design and implement evidence – based treatments for various mental health disorders. CO 4-To evaluate the effectiveness of clinical interventions using research-based methods. CO 5-To create cultural sensitivity and social justice in counselling. |
| EC2  | PSYCHOTHERAPY                               | CO 1-To get familiar with different types of psychotherapy CO 2-To understand the importance of ongoing learning, professional development, and selfcare CO 3-To conceptualize and manage cases.                                                                                                                                                                                                                              |

**PROGRAM: MASTERS IN PSYCHOLOGY** 

**SESSION:** 2019-2020

**PROGRAM CODE:** 9221- (01- 18)

- **PSO 1-** To create an in-depth understanding of the core concepts of Psychology.
- **PSO 2-**To enhance knowledge of psychology and its application to create harmony among internal and external environment
- **PSO 3-** To create research oriented theoretical foundation
- **PSO 4-**To help students to get acquainted with recent advances in the field of Psychology

| COURSE<br>CODE | COURSE                         | COURSE OUTCOME                                                                                                                                                                                                                                                                                                                                          |
|----------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CC1            | ADVANCED GENERAL<br>PSYCHOLOGY | CO 1-To understand the concepts of psychological concepts, theories and research methods CO 2-To get familiar with biological, cognitive, social and cultural factors in influencing human behaviour CO 3-To apply psychological principals to diverse population and contexts. CO 4-To understand and apply advanced psychological theories and models |
| CC2            | ADVANCED SOCIAL<br>PSYCHOLOGY  | CO 1-Understanding the social psychological theories concepts and research CO 2= Understanding and Application of social psychological concepts in real life                                                                                                                                                                                            |

| CC3 | RESEARCH<br>METHODOLOGY   | CO 3-To design and conduct research studies using various methods of statistical analysis CO 4-To evaluate the psychological research and its application CO 5-To create ability to design and conduct the research studies                                                                                                                     |
|-----|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CC4 | EXPERIMENTS IN PSYCHOLOGY | CO 1-Understanding the fundamental principles and methods of experimental psychology CO 2-Familiarity with the research designs, experiments and statistical analyses CO 3-To collect and analyse data effectively CO 4-To interpret and report the research findings effectively                                                               |
| CC5 | COGNITIVE<br>PSYCHOLOGY   | CO 1-To understand the fundamental principles and theories of cognitive psychology CO 2-To gain Knowledge of cognitive processes including perception, attention, memory, language and problem solving CO 3-To develop critical and curious mindset in understanding human behaviour CO 4-TO communicate complex cognitive concepts effectively |
| CC6 | NEUROPSYCHOLOGY           | CO 1-Understanding the fundamental principles and theories of neuropsychology CO 2-Familiarity with brain structure and functions CO 3-To get familiar with neurophysiological basis of behaviour                                                                                                                                               |

| CC7  | PSYCHOPATHOLOGY             | CO 1-Provides in- depth examination of the major types of psychopathologies including anxiety mood, personality and other psychotic disorders.  CO 2-To define the significance of psychopathology in understanding mental health  CO 3- Acquaintance with major types of psychopathologies including their symptoms diagnosis and assessment  CO 4-To evaluate the effectiveness of different treatment approaches |
|------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CC8  | STATISTICS FOR PSYCHOLOGY   | CO 1-To help analyse and interpret psychological data using statistical techniques CO 2-To understand the fundamentals of statistical analysis in Psychology CO 3-To get acquainted with different parametric and non- parametric                                                                                                                                                                                   |
| CC9  | PSYCHOLOGICAL<br>ASSESSMENT | CO 1-To diagnose mental health conditions accurately. CO 2-To clarify diagnostic uncertainties and complexities CO 3-Monitoring of treatment progress and adjustment of plans CO 4-Identification of research gaps and areas                                                                                                                                                                                        |
| CC10 | HEALTH<br>PSYCHOLOGY        | CO 1-To understand the psychological factors that influence physical health, illness and wellness.  CO 2-To gain Knowledge about biopsychosocial models of health and illness.  CO 3-To know the psychological aspects of chronic illness, such as pain management, coping strategies, and quality of life.                                                                                                         |

| CC11 | COUNSELLING PSYCHOLOGY        | CO 1-To provide an introduction to the principles and practices of counselling psychology, including the theoretical foundations, assessment and intervention strategies  CO 2-To understand the importance of empathy, genuineness and unconditional positive regard.  CO 3-To understand counselling process, establishing therapeutic relationship and implementing interventions                                                                                              |
|------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CC12 | EDUCATIONAL<br>PSYCHOLOGY     | CO 1-To explore the psychological principles and theories that underlie learning, teaching, and educational experiences.  CO 2-To understand the role of assessment in education, including the use of standardized tests and authentic assessments.  CO 3-To apply educational psychology principles to real world teaching and learning scenarios  CO 4-To develop an understanding of individual differences in learning, including learning styles abilities and disabilities |
| CC13 | HUMAN RESOURSCE<br>MANAGEMENT | CO 1-To help in applying psychological principles to the management of human resources in organizations.  CO 2-To analyse the psychological factors that influence employee behaviour, motivation and performance.                                                                                                                                                                                                                                                                |

|      |                                             | CO 3-To develop training and development programs that address individual differences and learning styles.  CO 4-To design effective recruitment and selection strategies that incorporate psychological principles                                                                                                                                                                                                           |
|------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CC14 | GENERAL<br>COUNSELLING SKILLS               | CO 1-Develop evidence- based interventions and techniques.  CO 2-To develop effective communication skills and inter- personal skills.  CO 3- To develop empathy, self-awareness and self-reflection skills.  CO 4-Ability to work with diverse population and present with various mental health concerns                                                                                                                    |
| EC1  | SPECIALIZATION IN<br>CLINICAL<br>PSYCHOLOGY | CO 1-To help understanding the theories and practices of clinical psychology CO 2- To diagnose mental health disorders using the DSM-5 classification system. CO 3-To design and implement evidence – based treatments for various mental health disorders. CO 4-To evaluate the effectiveness of clinical interventions using research-based methods. CO 5-To create cultural sensitivity and social justice in counselling. |
| EC2  | PSYCHOTHERAPY                               | CO 1-To get familiar with different types of psychotherapy CO 2-To understand the importance of ongoing learning, professional development, and selfcare CO 3-To conceptualize and manage cases.                                                                                                                                                                                                                              |

# **PROGRAM: MASTERS IN PSYCHOLOGY**

**SESSION:** 2020-2021

**PROGRAM CODE:** 9221- (01- 18)

- **PSO 1-** To create an in-depth understanding of the core concepts of Psychology.
- **PSO 2-**To enhance knowledge of psychology and its application to create harmony among internal and external environment
- **PSO 3-** To create research oriented theoretical foundation
- **PSO 4-**To help students to get acquainted with recent advances in the field of Psychology

| COURSE<br>CODE | COURSE                         | COURSE OUTCOME                                                                                                                                                                                                                                                                                                                                          |
|----------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CC1            | ADVANCED GENERAL<br>PSYCHOLOGY | CO 1-To understand the concepts of psychological concepts, theories and research methods CO 2-To get familiar with biological, cognitive, social and cultural factors in influencing human behaviour CO 3-To apply psychological principals to diverse population and contexts. CO 4-To understand and apply advanced psychological theories and models |
| CC2            | ADVANCED SOCIAL<br>PSYCHOLOGY  | CO 1-Understanding the social psychological theories concepts and research CO 2= Understanding and Application of social psychological concepts in real life                                                                                                                                                                                            |

| CC3 | RESEARCH<br>METHODOLOGY   | CO 3-To design and conduct research studies using various methods of statistical analysis CO 4-To evaluate the psychological research and its application CO 5-To create ability to design and conduct the research studies                                                                                                                     |
|-----|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CC4 | EXPERIMENTS IN PSYCHOLOGY | CO 1-Understanding the fundamental principles and methods of experimental psychology CO 2-Familiarity with the research designs, experiments and statistical analyses CO 3-To collect and analyse data effectively CO 4-To interpret and report the research findings effectively                                                               |
| CC5 | COGNITIVE<br>PSYCHOLOGY   | CO 1-To understand the fundamental principles and theories of cognitive psychology CO 2-To gain Knowledge of cognitive processes including perception, attention, memory, language and problem solving CO 3-To develop critical and curious mindset in understanding human behaviour CO 4-TO communicate complex cognitive concepts effectively |
| CC6 | NEUROPSYCHOLOGY           | CO 1-Understanding the fundamental principles and theories of neuropsychology CO 2-Familiarity with brain structure and functions CO 3-To get familiar with neurophysiological basis of behaviour                                                                                                                                               |

| CC7  | PSYCHOPATHOLOGY             | CO 1-Provides in- depth examination of the major types of psychopathologies including anxiety mood, personality and other psychotic disorders.  CO 2-To define the significance of psychopathology in understanding mental health  CO 3- Acquaintance with major types of psychopathologies including their symptoms diagnosis and assessment  CO 4-To evaluate the effectiveness of different treatment approaches |
|------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CC8  | STATISTICS FOR PSYCHOLOGY   | CO 1-To help analyse and interpret psychological data using statistical techniques CO 2-To understand the fundamentals of statistical analysis in Psychology CO 3-To get acquainted with different parametric and non- parametric                                                                                                                                                                                   |
| CC9  | PSYCHOLOGICAL<br>ASSESSMENT | CO 1-To diagnose mental health conditions accurately. CO 2-To clarify diagnostic uncertainties and complexities CO 3-Monitoring of treatment progress and adjustment of plans CO 4-Identification of research gaps and areas                                                                                                                                                                                        |
| CC10 | HEALTH<br>PSYCHOLOGY        | CO 1-To understand the psychological factors that influence physical health, illness and wellness.  CO 2-To gain Knowledge about biopsychosocial models of health and illness.  CO 3-To know the psychological aspects of chronic illness, such as pain management, coping strategies, and quality of life.                                                                                                         |

| CC11 | COUNSELLING PSYCHOLOGY        | CO 1-To provide an introduction to the principles and practices of counselling psychology, including the theoretical foundations, assessment and intervention strategies  CO 2-To understand the importance of empathy, genuineness and unconditional positive regard.  CO 3-To understand counselling process, establishing therapeutic relationship and implementing interventions                                                                                              |
|------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CC12 | EDUCATIONAL<br>PSYCHOLOGY     | CO 1-To explore the psychological principles and theories that underlie learning, teaching, and educational experiences.  CO 2-To understand the role of assessment in education, including the use of standardized tests and authentic assessments.  CO 3-To apply educational psychology principles to real world teaching and learning scenarios  CO 4-To develop an understanding of individual differences in learning, including learning styles abilities and disabilities |
| CC13 | HUMAN RESOURSCE<br>MANAGEMENT | CO 1-To help in applying psychological principles to the management of human resources in organizations.  CO 2-To analyse the psychological factors that influence employee behaviour, motivation and performance.                                                                                                                                                                                                                                                                |

|      |                                             | CO 3-To develop training and development programs that address individual differences and learning styles.  CO 4-To design effective recruitment and selection strategies that incorporate psychological principles                                                                                                                                                                                                           |
|------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CC14 | GENERAL<br>COUNSELLING SKILLS               | CO 1-Develop evidence- based interventions and techniques.  CO 2-To develop effective communication skills and inter- personal skills.  CO 3- To develop empathy, self-awareness and self-reflection skills.  CO 4-Ability to work with diverse population and present with various mental health concerns                                                                                                                    |
| EC1  | SPECIALIZATION IN<br>CLINICAL<br>PSYCHOLOGY | CO 1-To help understanding the theories and practices of clinical psychology CO 2- To diagnose mental health disorders using the DSM-5 classification system. CO 3-To design and implement evidence – based treatments for various mental health disorders. CO 4-To evaluate the effectiveness of clinical interventions using research-based methods. CO 5-To create cultural sensitivity and social justice in counselling. |
| EC2  | PSYCHOTHERAPY                               | CO 1-To get familiar with different types of psychotherapy CO 2-To understand the importance of ongoing learning, professional development, and selfcare CO 3-To conceptualize and manage cases.                                                                                                                                                                                                                              |

# **PROGRAM: MASTERS IN PSYCHOLOGY**

**SESSION:** 2021-2022

**PROGRAM CODE:** 9221- (01- 18)

- **PSO 1-** To create an in-depth understanding of the core concepts of Psychology.
- **PSO 2-**To enhance knowledge of psychology and its application to create harmony among internal and external environment
- **PSO 3-** To create research oriented theoretical foundation
- **PSO 4-**To help students to get acquainted with recent advances in the field of Psychology

| COURSE<br>CODE | COURSE                         | COURSE OUTCOME                                                                                                                                                                                                                                                                                                                                          |
|----------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CC1            | ADVANCED GENERAL<br>PSYCHOLOGY | CO 1-To understand the concepts of psychological concepts, theories and research methods CO 2-To get familiar with biological, cognitive, social and cultural factors in influencing human behaviour CO 3-To apply psychological principals to diverse population and contexts. CO 4-To understand and apply advanced psychological theories and models |
| CC2            | ADVANCED SOCIAL<br>PSYCHOLOGY  | CO 1-Understanding the social psychological theories concepts and research CO 2= Understanding and Application of social psychological concepts in real life                                                                                                                                                                                            |

| CC3 | RESEARCH<br>METHODOLOGY   | CO 3-To design and conduct research studies using various methods of statistical analysis CO 4-To evaluate the psychological research and its application CO 5-To create ability to design and conduct the research studies                                                                                                                     |
|-----|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CC4 | EXPERIMENTS IN PSYCHOLOGY | CO 1-Understanding the fundamental principles and methods of experimental psychology CO 2-Familiarity with the research designs, experiments and statistical analyses CO 3-To collect and analyse data effectively CO 4-To interpret and report the research findings effectively                                                               |
| CC5 | COGNITIVE<br>PSYCHOLOGY   | CO 1-To understand the fundamental principles and theories of cognitive psychology CO 2-To gain Knowledge of cognitive processes including perception, attention, memory, language and problem solving CO 3-To develop critical and curious mindset in understanding human behaviour CO 4-TO communicate complex cognitive concepts effectively |
| CC6 | NEUROPSYCHOLOGY           | CO 1-Understanding the fundamental principles and theories of neuropsychology CO 2-Familiarity with brain structure and functions CO 3-To get familiar with neurophysiological basis of behaviour                                                                                                                                               |

| CC7  | PSYCHOPATHOLOGY             | CO 1-Provides in- depth examination of the major types of psychopathologies including anxiety mood, personality and other psychotic disorders.  CO 2-To define the significance of psychopathology in understanding mental health  CO 3- Acquaintance with major types of psychopathologies including their symptoms diagnosis and assessment  CO 4-To evaluate the effectiveness of different treatment approaches |
|------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CC8  | STATISTICS FOR PSYCHOLOGY   | CO 1-To help analyse and interpret psychological data using statistical techniques CO 2-To understand the fundamentals of statistical analysis in Psychology CO 3-To get acquainted with different parametric and non- parametric                                                                                                                                                                                   |
| CC9  | PSYCHOLOGICAL<br>ASSESSMENT | CO 1-To diagnose mental health conditions accurately. CO 2-To clarify diagnostic uncertainties and complexities CO 3-Monitoring of treatment progress and adjustment of plans CO 4-Identification of research gaps and areas                                                                                                                                                                                        |
| CC10 | HEALTH<br>PSYCHOLOGY        | CO 1-To understand the psychological factors that influence physical health, illness and wellness.  CO 2-To gain Knowledge about biopsychosocial models of health and illness.  CO 3-To know the psychological aspects of chronic illness, such as pain management, coping strategies, and quality of life.                                                                                                         |

| CC11 | COUNSELLING PSYCHOLOGY        | CO 1-To provide an introduction to the principles and practices of counselling psychology, including the theoretical foundations, assessment and intervention strategies  CO 2-To understand the importance of empathy, genuineness and unconditional positive regard.  CO 3-To understand counselling process, establishing therapeutic relationship and implementing interventions                                                                                              |
|------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CC12 | EDUCATIONAL<br>PSYCHOLOGY     | CO 1-To explore the psychological principles and theories that underlie learning, teaching, and educational experiences.  CO 2-To understand the role of assessment in education, including the use of standardized tests and authentic assessments.  CO 3-To apply educational psychology principles to real world teaching and learning scenarios  CO 4-To develop an understanding of individual differences in learning, including learning styles abilities and disabilities |
| CC13 | HUMAN RESOURSCE<br>MANAGEMENT | CO 1-To help in applying psychological principles to the management of human resources in organizations.  CO 2-To analyse the psychological factors that influence employee behaviour, motivation and performance.                                                                                                                                                                                                                                                                |

|      |                                             | CO 3-To develop training and development programs that address individual differences and learning styles.  CO 4-To design effective recruitment and selection strategies that incorporate psychological principles                                                                                                                                                                                                           |
|------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CC14 | GENERAL<br>COUNSELLING SKILLS               | CO 1-Develop evidence- based interventions and techniques.  CO 2-To develop effective communication skills and inter- personal skills.  CO 3- To develop empathy, self-awareness and self-reflection skills.  CO 4-Ability to work with diverse population and present with various mental health concerns                                                                                                                    |
| EC1  | SPECIALIZATION IN<br>CLINICAL<br>PSYCHOLOGY | CO 1-To help understanding the theories and practices of clinical psychology CO 2- To diagnose mental health disorders using the DSM-5 classification system. CO 3-To design and implement evidence – based treatments for various mental health disorders. CO 4-To evaluate the effectiveness of clinical interventions using research-based methods. CO 5-To create cultural sensitivity and social justice in counselling. |
| EC2  | PSYCHOTHERAPY                               | CO 1-To get familiar with different types of psychotherapy CO 2-To understand the importance of ongoing learning, professional development, and selfcare CO 3-To conceptualize and manage cases.                                                                                                                                                                                                                              |

# **PROGRAM: MASTERS IN PSYCHOLOGY**

**SESSION:** 2022-2023

**PROGRAM CODE:** 9221- (01- 18)

- **PSO 1-** To create an in-depth understanding of the core concepts of Psychology.
- **PSO 2-**To enhance knowledge of psychology and its application to create harmony among internal and external environment
- **PSO 3-** To create research oriented theoretical foundation
- **PSO 4-**To help students to get acquainted with recent advances in the field of Psychology

| COURSE<br>CODE | COURSE                         | COURSE OUTCOME                                                                                                                                                                                                                                                                                                                                          |
|----------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CC1            | ADVANCED GENERAL<br>PSYCHOLOGY | CO 1-To understand the concepts of psychological concepts, theories and research methods CO 2-To get familiar with biological, cognitive, social and cultural factors in influencing human behaviour CO 3-To apply psychological principals to diverse population and contexts. CO 4-To understand and apply advanced psychological theories and models |
| CC2            | ADVANCED SOCIAL<br>PSYCHOLOGY  | CO 1-Understanding the social psychological theories concepts and research CO 2= Understanding and Application of social psychological concepts in real life                                                                                                                                                                                            |

| CC3 | RESEARCH<br>METHODOLOGY   | CO 3-To design and conduct research studies using various methods of statistical analysis CO 4-To evaluate the psychological research and its application CO 5-To create ability to design and conduct the research studies                                                                                                                     |
|-----|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CC4 | EXPERIMENTS IN PSYCHOLOGY | CO 1-Understanding the fundamental principles and methods of experimental psychology CO 2-Familiarity with the research designs, experiments and statistical analyses CO 3-To collect and analyse data effectively CO 4-To interpret and report the research findings effectively                                                               |
| CC5 | COGNITIVE<br>PSYCHOLOGY   | CO 1-To understand the fundamental principles and theories of cognitive psychology CO 2-To gain Knowledge of cognitive processes including perception, attention, memory, language and problem solving CO 3-To develop critical and curious mindset in understanding human behaviour CO 4-TO communicate complex cognitive concepts effectively |
| CC6 | NEUROPSYCHOLOGY           | CO 1-Understanding the fundamental principles and theories of neuropsychology CO 2-Familiarity with brain structure and functions CO 3-To get familiar with neurophysiological basis of behaviour                                                                                                                                               |

| CC7  | PSYCHOPATHOLOGY             | CO 1-Provides in- depth examination of the major types of psychopathologies including anxiety mood, personality and other psychotic disorders.  CO 2-To define the significance of psychopathology in understanding mental health  CO 3- Acquaintance with major types of psychopathologies including their symptoms diagnosis and assessment  CO 4-To evaluate the effectiveness of different treatment approaches |
|------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CC8  | STATISTICS FOR PSYCHOLOGY   | CO 1-To help analyse and interpret psychological data using statistical techniques CO 2-To understand the fundamentals of statistical analysis in Psychology CO 3-To get acquainted with different parametric and non- parametric                                                                                                                                                                                   |
| CC9  | PSYCHOLOGICAL<br>ASSESSMENT | CO 1-To diagnose mental health conditions accurately. CO 2-To clarify diagnostic uncertainties and complexities CO 3-Monitoring of treatment progress and adjustment of plans CO 4-Identification of research gaps and areas                                                                                                                                                                                        |
| CC10 | HEALTH<br>PSYCHOLOGY        | CO 1-To understand the psychological factors that influence physical health, illness and wellness.  CO 2-To gain Knowledge about biopsychosocial models of health and illness.  CO 3-To know the psychological aspects of chronic illness, such as pain management, coping strategies, and quality of life.                                                                                                         |

| CC11 | COUNSELLING PSYCHOLOGY        | CO 1-To provide an introduction to the principles and practices of counselling psychology, including the theoretical foundations, assessment and intervention strategies  CO 2-To understand the importance of empathy, genuineness and unconditional positive regard.  CO 3-To understand counselling process, establishing therapeutic relationship and implementing interventions                                                                                              |
|------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CC12 | EDUCATIONAL<br>PSYCHOLOGY     | CO 1-To explore the psychological principles and theories that underlie learning, teaching, and educational experiences.  CO 2-To understand the role of assessment in education, including the use of standardized tests and authentic assessments.  CO 3-To apply educational psychology principles to real world teaching and learning scenarios  CO 4-To develop an understanding of individual differences in learning, including learning styles abilities and disabilities |
| CC13 | HUMAN RESOURSCE<br>MANAGEMENT | CO 1-To help in applying psychological principles to the management of human resources in organizations.  CO 2-To analyse the psychological factors that influence employee behaviour, motivation and performance.                                                                                                                                                                                                                                                                |

|      |                                             | CO 3-To develop training and development programs that address individual differences and learning styles.  CO 4-To design effective recruitment and selection strategies that incorporate psychological principles                                                                                                                                                                                                           |
|------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CC14 | GENERAL<br>COUNSELLING SKILLS               | CO 1-Develop evidence- based interventions and techniques. CO 2-To develop effective communication skills and inter- personal skills. CO 3- To develop empathy, self-awareness and self-reflection skills. CO 4-Ability to work with diverse population and present with various mental health concerns.                                                                                                                      |
| EC1  | SPECIALIZATION IN<br>CLINICAL<br>PSYCHOLOGY | CO 1-To help understanding the theories and practices of clinical psychology CO 2- To diagnose mental health disorders using the DSM-5 classification system. CO 3-To design and implement evidence – based treatments for various mental health disorders. CO 4-To evaluate the effectiveness of clinical interventions using research-based methods. CO 5-To create cultural sensitivity and social justice in counselling. |
| EC2  | PSYCHOTHERAPY                               | CO 1-To get familiar with different types of psychotherapy CO 2-To understand the importance of ongoing learning, professional development, and selfcare CO 3-To conceptualize and manage cases.                                                                                                                                                                                                                              |

# **SOCIOLOGY ( M.A. COURSE OUTCOME)**

| Course Outcome                                                                   | Mapping with Course    |
|----------------------------------------------------------------------------------|------------------------|
| This will help the students to attain basic understanding and the scope of       | P.G. Sem-1, Paper-1-   |
| the subject, recent trends of social development helps the students in           | Principles of          |
| enhancing their theoretical understanding and applying it to understand the      | Sociology              |
| social interaction process in everyday life.                                     |                        |
| This course is designed so that the students attain basic as well as advanced    | P.G. Sem-1, Paper-2    |
| theoretical knowledge of sociology like Conflict theory, Neo-Marxian theory,     | Classical Sociology+   |
| Symbolic Interactionism and its relevance in understanding and applying it       | P.G. Sem-1, Paper-3    |
| to deal with the contemporary social issues. It helps the students to develop    | Perspectives in Indian |
| philosophical, logical, rational and critical thinking in their understanding of | Sociology              |
| multifarious aspects of society.                                                 |                        |
| This helps the students to understand the rural Indian society and the role      | P.G. Sem-1, Paper4-    |
| of caste as an institution of Indian society, the rural urban dichotomy and      | Rural Sociology        |
| continuum .The students are also able to examine and evaluate the                |                        |
| changing trends in rural power structure.                                        |                        |
| The students get acquainted with the philosophy behind conducting social         | P.G. Sem-2, Paper-5-   |
| research, the students learn to apply different kinds of research design and     | Research Methods in    |
| tools, techniques in accordance with the need of the research.                   | Sociology              |
| The students get aware about the impact of population on society and the         | P.G. Sem-2, Paper-6    |
| factors behind change in population. They also get informed about the            | Sociology of           |
| important issues related to population.                                          | Population Studies     |
| The students get sensitized about gender issues, the grave issue of gender       | P.G. Sem-2, Paper-7    |
| inequality and violence against women and social construction of gender in       | Gender and Society     |
| society.                                                                         |                        |
| The students' knowledge get enhanced about the emerging social issues            | P.G. Sem-2, Paper-8-   |
| and changing social relations due to urbanisation and the changing trends in     | Urban Sociology+       |
| the urban social institutions. They are also able to understand the              | P.G. Sem-3, Paper-12,  |
| sociological meaning of work and leisure, various aspects of industrial          | Industrial Sociology   |
| relations and issue of job satisfaction                                          |                        |
| The students get familiarised about sociological and legal delinquency,          | P.G. Sem-2, Paper-9-   |
| causes of crime, Theories of punishment. The students are able to get            | Crime and Society, +   |
| acquainted with multifarious causes of various social problems and the           | P.G. Sem-3,Paper-11-   |
| issues of marginalised community. The students also get acquainted with          | Social Problems in     |
| various government steps to resolve such issues.                                 | India+                 |
|                                                                                  | . P.G. Sem-3, Paper-   |
|                                                                                  | 14-Sociology of        |
|                                                                                  | Marginalized           |
|                                                                                  | Communities            |
| Through this paper, the students are able to understand the theories and         | P.G. Sem-3, Paper-13-  |
| factors of social change. The students are able to understand social change      | Sociology of change    |
| through sanskritisation, westernisation, modernization and globalisation         | and development        |
| .They also get acquainted with various theories of development.                  |                        |

## Program Specific Outcomes (PSO) of M.Sc. Zoolog

PSO1: Developing deeper understanding of key concepts of biology at biochemical, molecular and cellular level, physiology and reproduction at organismal level, and ecological impact on animal behavior.

PSO2: Elucidation of animal-animal, animal-plant, animal-microbe interactions and their consequences

to animals, humans and the environment.

PSO3: Strengthening of genetics and cytogenetics principle in light of advancements in understanding

human genome and genomes of other model organisms.

PSO4: Description of expression of genome revealing multiple levels of regulation and strategies to manipulate the same in the benefit of the mankind.

PSO5: Learning handling DNA sequence data and its analysis which equip students to get employed in

R&D in the industry involved in DNA sequencing services, diagnostics, and microbiome analysis.

PSO5: Understanding relationships of variations in phenotypic expression of genomes and their genomewide

interaction with other organisms.

PSO6: Development of an understanding of zoological science for its application in medical , aquaculture and modern medicine.

PSO7: Development of theoretical and practical knowledge in handling the animals and using them as

model organism

PSO8: Maintenance of high standards of learning in animal sciences

#### Course Outcomes

Semester - 1

# Course: CC 1 FUNCTIONAL BIOLOGY OF INVERTEBRATES AND CHORDATES

CO1: Description of internal transport and gas exchange

CO2: Regulation of heart-beat and blood pressure, neural and chemical regulation of respiration, Gas transfer in air and water.

CO3: Perception of circulatory and respiratory responses to extreme conditions

CO4: Discerning acid –base balance, Regulation of body pH.

CO5: Developing the concept of animal adaptation by exploring the diversity of functional

characteristics of various kinds of organisms which is closely related to evolutionary processes and environmental changes.

CO5: Perception of Osmoregulation, Kidney functions and diversity, Extra-renal osmoregulatory organs,

Patterns of nitrogen excretion.

CO6: Concept of thermoregulation - Heat balance in animals, Adaptations to temperature extremes, torpor, Aestivation and hibernation, Counter current heat exchangers.

CO7: Understanding of adaptations to Stress- basic concept of environmental stress, acclimatization, avoidance and tolerance, stress and hormones.

CO8: Description of sensing the environment- photoreception, chemoreception, mechano-reception, echolocation, endogenous and exogenous biological rhythms, chromatophores and bioluminescence.

CO9: Understanding of feeding mechanisms and their control, effect of starvation.

CO10: Description of muscle physiology – striated and smooth muscle, adaptations of muscles for various activities, neuronal control of muscle contraction, electric organs.

## Course CC2 - Molecular Cell Biology

CO1: Description of transport acrossthe plasma membrane, mechanism of diffusion, movement of water, Donnan equilibrium, ion movements and cell function, acidification of cell organelles and stomach.

CO2: Understanding transepithelial transport, maintenance of cellular pH, cell excitation, bulk transport,

receptor mediated endocytosis, protein sorting and targeting to organelles, molecular mechanism of the

secretory pathway, secretion of neurotransmitters.

CO3: Description of cellular shape, motility and energetics- cytoskeletal elements in cell shape and motility, structure and dynamics, role in cell locomotion and mitosis.

CO4: A study of intercellular communication, extracellular matrix, cell- cell and cell-matrix adhesion, gap

junctions, cellular energetics, oxidation of glucose and fatty acids, the proton motive force, F0F1 ATP synthase, mechanism and regulation of ATP synthesis.

CO5: Description of life cycle of a cell - cell cycle and its regulation, checkpoints in the mammalian cell

cycle.

CO9: Description of cell regulatory mechanisms- regulatory and control mechanisms in a mammalian cell

at the biochemical level, key concepts about cellular signaling mechanisms

CO10: Overview of proliferative, survival and death pathways, desensitization of receptors, signaling and toxins

CO11: Description of siRNA and miRNA basics, regulation of transcription and translation of proteins by

miRNA.

## Course CC3 - Genetics

CO1: Understanding of Mendel's principle, its extension and chromosomal basis.

CO2: Determination of gene action from genotype to phenotype including penetrance and expressivity,

gene interaction, epistasis, pleiotropy; nature of the geneand its functions.

CO3: Evolution of the concept of the gene and fine structure of gene using rII locus.

CO4: Capability to perform gene mapping using 3- point test cross in Drosophila, gene mapping in humans by linkage analysis in pedigrees.

CO5: Imparting knowledge regarding gene mutation, types of gene mutations, methods for detection ofinduced mutations, P- element insertional mutagenesis in Drosophila, DNA damage and repair.

CO6: Developing concept of regulation of gene activity in prokaryotes and eukaryotes at transcriptional

and posttranscriptional level.

CO7: Describing structural and functional organization of a typical eukaryotic gene, transcription factors,

enhancers and silencers, and non-coding genes.

CO8: Depicting the mechanism of sex determination and dosage compensation in human and other model organisms.

CO9: Developing skills in human genetics with capability for karyotyping and nomenclature of metaphase chromosome bands.

CO10: Description of human genome and mapping.

COURSE CC 4

CO 1 -Squash preparation using drosophila larvae for polytene chromosomes.

CO 2-Experimental demonstration of enumeration of RBC and WBC.

CO3-Identification of vertebrate and invertebrate slides.

CO4-PREPERATION of linkage map based on data from drosophila crosses.

## Course CC5 – ENVIRONMENTAL SCIENCE

CO1: An overview of evolutionary ecology and environmental concepts

CO2: Understanding the characteristics of population and population dynamics.

CO3: A study of life history pattern, fertility rate and age structure.

CO4: Illustration of competition and coexistence, intra-specific and inter-specific interactions, scramble

and contest competition model, mutualism and commensalism, prey-predator interactions.

CO5: Description of nature of ecosystem, production, food webs, energy flow, biogeochemical cycles, resilience of ecosystem and ecosystem management.

CO6: Understanding the biosphere, biomes and impact of climate on biomes.

CO7: An overview of the environmental stresses and their management, global climatic pattern, global

warming, atmospheric ozone, acid and nitrogen deposition, coping with climatic variations.

CO8: Description of the major classes of contaminants. Impact of pesticides and other chemicals in agriculture, industry and hygiene and their disposal.

CO9: Impact of chemicals on biodiversity of microbes, animals and plants. Bioindicator and biomarkers

of environmental health. Biodegradation and bioremediation of chemicals.

#### Course CC6 –BIOINSTRUMENTATION AND BIOSTATISTICS

CO1: Introduction to basic components of computers, Software (operating systems) and application software used in biological and statistical studies

CO2: Understanding the principle and working of microscopy ,ph meter ,colorimeter and other instruments.

CO3 Study of basic separation techniques

CO4-STUDY OF DIFFERENT biostatistical methods.

CO1: Understanding of the living state, metabolism as the defining characteristic of living organisms, molecular approach to understanding life forms and living processes.

CO2: Concept of biomolecule identification, separation and quantization, dynamic state of body constituents, experimental approaches to study metabolism.

CO3: Conceptualization of metabolic pathways and their linkage, metabolism of primary metabolites –

monosaccharides, lipids, amino acids and nucleotides.

CO4: Description of nature of enzymes – kinetics, reaction mechanism of chymotrypsin and lysozyme,

purification and physico – chemical characterization, regulation of enzyme activity.

CO5: Developing concept of metabolic basis of nutrition, metabolic basis of specialized tissue function.

CO6: Elucidation of metabolic disorders, metabolic basis of diagnostics, metabolism and adaption,

CO7: Description of regulation of metabolism at molecular, cellular and organismic levels, enzymes and

receptors as drug targets.

#### Course CC8: BIOSYSTEMATICS AND EVOLUTION

CO1: An insight to the overview of evolutionary biology, concept of organic evolution during pre- and post- Darwin era evolution and molecular biology- a new synthesis.

CO2: A concept of – "from molecules to life", life originated from RNA, introns as ancient component of

genes

CO3: Understanding of the universal common ancestor and tree of life, three domain concept of living

kingdom

CO4: Illustration of the molecular phylogeny, construction of phylogenetic trees using molecular data,

construction of phylogenetic trees by using 16S rRNA gene sequences and concept of speciation in bacteria.

CO5: Description of molecular divergence and molecular clocks and molecular drive, complication in inferring phylogenetic trees.

CO6: Description of origin and diversification of bacteria and archea; diversification of genomes, origin

of genomes by horizontal gene transfer; role of plasmid, transposons, integrons and genomic islands in

DNA transfer.

CO7: Study of origin and diversification of eukaryotes, early fossilized cells, evolution of eukaryotic cell

from prokaryotes- a case of symbiosis, evolution of eukaryotic genomes; gene duplication and divergence.

CO8: Conceptualization of mode of speciation, evolution, systematics, biological classification, origination, extinction, and causes of differential rates of diversification.

CO9: Illustration of current status and future of biodiversity, human evolution.

CO10: Understanding genomics and humanness, current issues in human evolution.

# COURSE -CC 9:

CO1 STUDY OF BIOCHEMICAL EXPERIMENTS.

CO2 UNDERSTANDING THE EVOLUTIONARY SIGNIFICANCE OF ARCHAEOPTERIX...Homology and analogy and others.

CO3 Preperation of temporary mount of some specimen.

CO3 MEASUREMENT OF PH..ESTIMATION OF DISSOLVED 02

#### Course CC 10 – VERTEBRATE IMMUNOLOGY

CO1: An overview of the immune system, principles of innate and adaptive immunity. Evolution of innate andadaptive immune system.

CO2: Understanding of antigen recognition by immune cells, role of TLRs.

CO3: Conceptualization of generation of diversity in immunoglobulins and T- cell receptor gene rearrangement.

CO4: Illustration of antigen processing and presentation to T lymphocytes by antigen presenting cells and understanding the role of MHC complex.

CO5: An overview of development and survival of lymphocytes, humoral immune response, production

of effector T- cells and effector mechanisms.

CO6: Description of effector mechanisms, NK and NKT cell functions.

CO7: Conceptualization of regulation of immune response, mucosal immunity, immunological memory,

cytokines and chemokines. T- cell mediated regulation of immune response, Immunological tolerance

and anergy.

CO8: Importance of immunity in health and disease: introduction to infectious disease, innate immunity

to infection, adaptive immunity to infection, evasion of the immune response by pathogens.

CO9: Description of consequence of immunodeficiency leading to diseases such as inherited acquired immunodeficiency diseases.

CO10: Illustration of allergy and hypersensitivity diseases, autoimmunity, transplant rejection and responses to alloantigens.

CO11: An understanding of manipulation of immune responses for the benefit of mankind, vaccines

## Course CC 11- GAMETE AND DEVELOPMENTAL BIOLOGY

CO1: Understanding of sex determination and differentiation and its mechanism

CO2: Elucidation of stem cell renewal in testis during spermatogenesis, structural and molecular events,

and respective experimental approaches

CO3: Description of regulation of testicular functions.

CO4: Epididymal maturation of spermatozoa; Capacitation, Signal transduction pathway in acrosome reaction;

CO5: Illustration of different types of male sterility includingazoospermia,

oligozoospermia, asthenozoospermia, and varicocele with specific emphasis on the genetic and molecular basis

CO5: Understanding of detailed follicular development and selection evaluating the role of extra-and intra-gonadal factors in folliculogenesis.

CO6: Description of oocyte maturation its regulationand follicular atresia.

CO7:Knowledge of regulation of reproductive cycle in female: menstrual cycle in human, estrous cycle in

rat, estrous behavior in cycling animals.

CO8: Development of mechanistic understanding of female reproductive disorder: amenorrhea,

polycystic ovary.

CO9: Familiarity with the process of fertilization with a comparative account of different events involved.

CO10: Generating awareness on contraception leading to prevention of polyspermy: surgical, hormonal

and immunocontraception.

## Course CC12 - VERTEBRATE ENDOCRINOLOGY

CO1: General understanding of anatomical and structural organization of neuroendocrine organs and nervous system.

15

CO2: Imparting knowledge regarding neurophysiology, electrical properties of neurons and propagation

of nerve impulses.

CO3: Description of Synapse, neurotransmition and neuromodulation

CO4: Detailed understanding of the hypothalamo- hypophyseal axis, hypothalamo- vascular system and

role of hormones.

CO5: Knowledge of regulation of hypothalamic and pituitary hormone secretion.

CO6: Imparting knowledge on physiological and mechanistic role of neurohypophysis and regulation of

neurohypophyseal hormones.

CO7: Conceptualization of feed-back inhibition and feed-forward activation of neurohypophyseal hormones.

CO 8: Understanding the nature of hormonal action and its experimental methods of evaluation.

CO 9: Elucidation of biosynthesis of protein hormones and molecular mechanisms of regulation.

CO 10: Knowledge of signal discrimination, signal transduction and signal amplification in hormone regulated physiological processes.

CO11: Acquaintance with receptor antagonists and their applications. and humans.

## Course CC13-ANIMAL BEHAVIOUR

CO1: An overview of animal behavior, orientation to primary and secondary orientation; kinesis –

orthokinesis, klinokinesis; taxis – different kinds of taxis; sun-compass orientation, dorsal- light reaction.

CO2: Devising conservation strategies for different animal species. Learning and instincts: conditioning,

habituation, sensitization, reasoning.

CO3. Developing compassion towards other animals as well as other individuals, group selection, kin selection and inclusive fitness, cooperation, and alarm call.

CO4. Evaluating other individuals of the society and taking decisions.

#### **COURSE CC14**

CO1 -Determination of blood group using ABD antisera

CO2 -Identification of endocrinological and embryological slides.

CO3- Study of behavioural aspects of specimen provided.

# Course EC 1B AND 2B - FISH AND INLAND FISHERIES

CO1: A detailed understanding of evolutionary strategies and morphological innovations, gene and genome duplication, evolutionary genetics, biogeographical distribution of major groups of fishes.

CO2: An overview of adaptations of fishes to environmental extremes- temperature, pressure, stressors.

CO3: Understanding growth and metabolism of fishes by regulation of food intake by neuropeptides and

hormones, environmental factors and feed intake.

CO4: Evaluation of defense mechanism in fishes and their regulation.

CO5: Learning of fish reproduction for better yield in fish farming.

Course ZOOL 4202 - Aquatic Resources and Their Conservation

CO1: Learning classification of riverine fisheries and their hydrological conditions.

CO2: A detailed understanding of cold water fisheries, biology of important cold water fishes of India for

better production of fishes in extreme condition.

CO3: Learning fishing techniques for localizing catches- remote sensing, sonar, radar; crafts and gears.

CO4: An overview of post harvest technique to prevent fish spoilage for better preservation and quality

control.

CO5: Learning the management of aquatic pollution, waste management and fisheries extension

services.